UNIVERSITA DEGLI STUDI DI CAMERINO

SCUOLA DI SCIENZE E TECNOLOGIE

Corso di Laurea in Mathematics and Applications
(Classe LM-40)

Universita di Camerino

1336

Configuration spaces

and braids on graphs

Master Thesis in Geometry (S.5.D. MAT /03)

Relatore Laureanda

Prof. Riccardo Piergallini Giada Serafini

Anno Accademico 2019 - 2020






uxOnuatixdg : incline alla conoscenza






Table of contents

Introduction

Preliminaries
1.1 Graphs .. .. ...
1.2 Complexes . . . .. .. ... ... L
1.3 Homotopy and fundamental group . ... ... ... .. ..
1.4 Presentationsof groups . . ... ... ... ... .. .....
1.5 Classical Morsetheory . . ... ... ... ...........

1.6

Discrete Morse theory . . . .. ... .. ... ... ......

Braid groups and their presentations

2.1
2.2

2.3

Configuration spaces and braids . . . .. ... ... .....
Classical braid groups . . . .. ... ... ... ........
Braidsongraphs . ... ........ .. .. .. .......

Presentations of braid groups on graphs via cubical complexes

3.1
3.2
33

The normalized configuration space N, (G) . . . . ... ...
The weak deformation of C,(G) into N, (G) ... ... ...
The cubical complex Q,(G) . . . ... ... ... ... ....

Applications and examples

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Radialtrees Ty . . . . . . . . o o oottt
Bouquetsof loops Ly . . . ... ... ... . ...
Graphs Gy, . . . o o oo oo
Balloons By . . . . . .« . e
Graphs O . . . . .. .. .
Chains Ci. . . . . o o o i it
The smallest non linear tree T . . . . . . ... ... ......
Other examples with non-trivial relations . . . . ... ...

Mathematica Code



vi

TABLE OF CONTENTS



Introduction

The date of birth of braids theory is commonly set in 1925, when Emil
Artin in his work [Ar25] provided a geometrical definition and a presen-
tation for the n-braid group B, but the notion of braid was already well
known.

The first sketch of a braid can be found in Gauss’ notebooks dating back
to the first half of the XIX century. Moreover, Gauss was the first to pose
the problem of classifying braids up to a suitable equivalence relation.
Later, some other authors including Hurwitz, introduced implicitely in
their works the concept of braid groups without providing a formal defi-
nition of the structure until Artin did it.

The emphasis of Artin work lies in translating geometrical issues into
group-theoretical ones, indeed for example the classification of braids up
to isotopy is seen as the word problem for the braid group.

In [Ar], Artin showed also the relation between the braid group B, and
the configuration space of n points on the plane R?. Indeed, consider the
loops based at a point w in the configuration space C,,(IR?), consisting of
n points whose second coordinate is zero, w = {(1,0),(2,0),...,(n,0)}.
Then, suppose that at some moment ¢, a loop passes through an element
x(t) € Cy(IR?) and notice that x(t) is a plane with n distinct points marked
on it. If we place the plane x(t) in R by adding the third coordinate z = ¢
and if we let ¢ vary in [0, 1], then we obtain an n-braid. Hence, there is a
bijective correspondence between the homotopy classes of loops based at
w and the isotopy classes of n-braids, that is B, = 711 (C, (IR?)).

Many applications of braids theory have been found out during the last
century, but we are going to focus on an unexpected one in robotics.

In the 1990's, some mathematicians approached to safe control schemes
for automated guided vehicles (AGVs). The problem was designin a con-
trol scheme which avoids collissions with obstacles or other AGVs and,
at the same time, guarantees a high enough efficiency in completing the
assigned task.

The workspace floor of the factory with n AGVs moving, can be thought

Vil



of as the configuration space C,(IR?), but in order to reduce the sophis-
tication required for the AGVs, they can be imagined to move only on
guidepath wires. For this reason, the problem was moved to configura-
tion spaces on graphs and consequently to the braid groups on graphs.

In the last two decades, different methods have been proposed in order to
provide increasingly easier and efficient computing of presentations for
braid groups on graphs.

The pioneering works by Ghrist and Abrams [Ghgg], [Ab], [AG], [Gho7]
have become the basis of further results. The so called Subdivision The-
orem, proved by Abrams in [Ab], was used by Farley and Sabalka in
[FSos], [FSog] together with the discrete Morse theory to give a descrip-
tion of the critical cells of a "discretization" of the configuration space
Cn(G) of a graph G admitting a cubical complex structure. In particular,
this discretized configuration space requires a subdivision of the graph
G depending on the number n of points on it. Then, Farley and Sa-
balka were able to compute a presentation for the braid group B,(G) of
G where the generators are the critical 1-cells and the relations are given
by the critical 2-cells.

The purpose of this thesis is to study the configuration spaces of graphs
and to compute presentations for the corresponding braid groups, adopt-
ing a simpler approach that avoids the need for the subdivision theorem
and the Morse theory. Our starting idea was to explicitely construct a
kind of normalized configuration subspace N, (G) which is a weak defor-
mation of C,(G), and a homeomorphism between N, (G) and a cubical
complex 9, (G) without requiring any subdivision of G. Then, a presen-
tation for B, (G) can be directly derived from the 2-skeleton of Q,(G),
without using Morse theory.

At a later stage we found out that in [Sw], Swiatkowski had already fol-
lowed a similar argument which was not cited in the later works by Ghrist
and Abrams [AG], [Ghoy]. Indeed, he defined an embedding i of a cubi-
cal complex K, (G) into the configuration space C,(G) and then he stated
that there is a certain strong deformation retraction r: C,(G) — i(K,(G)).
All the proofs are left to the reader and we have verified that r is not even
a retraction.

Chapter 1 reviews the basic notions and results regarding graphs, CW-
complexs, fundamental groups and group presentations, which will be
needed for later chapters. The last two sections briefly introduce classical
and discrete Morse theory, stating the main theorems of both theories.

In chapter 2, first we define configuration spaces and braid groups on
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metric spaces, then the last section is focused on describing in some de-
tail the results achieved by Ghrist, Abrams, Farley and Sabalka regarding
the presentations for braid groups on graphs.

Chapter 3 is subdivided in three sections as follows. First we define the
normalized configuration space N,(G), consisting of all the configura-
tions x € C,(G) whose first and last points along each edge e of G vary
inside two proper intervals, while the intermediate points are uniformly
distributed between them.

Then, we construct a continuous mapping ®: C,(G) — C,(G) such that
Im ® = N, (G) and we prove that ® gives a weak deformation of the con-
figuration space C,(G) into the normalized configuration space N, (G).
Finally, we construct a cubical complex Q,(G) homeomorphic to Nu(G),
and provide a presentation for the braid group B,(G) as the fundamental
group of 9,(G).

In chapter 4, we analyze in detail some families of graphs and we com-
pute a presentation for their braid groups, based on the results seen in
chapter 3. In particular, we find general formulas for the radial trees and
the bouquets of loops, which agree with the already known results seen
in chapter 2.

X






CHAPTER 1

Preliminaries

In this preliminary chapter we introduce notions and tools necessary
to understand later results. In particular, we need to deal with cell com-
plexes, cubical and simplicial complexes, graphs, discrete Morse theory
and some other topics from algebraic topology.

Let R" = {(x1,...,xy) : x;, € RVi=1,...,n} be the n-dimensional
Euclidean space provided with the usual metric d(x,y) =||x — y|| and the
topology induced by this metric.

We adopt the following notations:

B" = {x € R" : ||x|| <1} for the closed unit n-ball in R";
S" = {x € R"*! :||x|| = 1} for the unit n-sphere in R"*1;
Int B" = B"\ S"~! for the interior of B";

Bd B" = S"~! for the boundary of B".

1.1 Graphs

Definition 1.1.1. A finite graph G = (V;, Eg, Fg) consists of a set Vg of
vertices, a set Eg of edges and a map Fg: Eg — (Vg x Vi) /%, which asso-
ciates to each edge e € E; an unordered pair of non-necessarily distinct
vertices in V(;, called the endpoints of e.

When the endpoints of an edge ¢ € Eg coincide, the edge e is said a loop.

The degree or valence of a vertex v, denoted by deg(v), is the number
of occurencies of v in the pairs of endpoints of all the edges. A vertex of
degree 0 is an isolated vertex, a vertex of degree 1 is a terminal vertex and
a vertex of degree = 2 is an inessential vertex.

A planar graph is a graph which can be embedded into R,
A subgmph of a graph G = (VG/ EG, FG) is a graph H = (VH/ EH/ FH)
such that Vg C V5, Eg C Eg and Fy = FgEy,-

1



2 Chapter 1

A path in a graph G is a sequence of edges P = ej,e,...,6p
for which there exists a sequence of vertices vy,...,v; of G so that
Fg(ej) = [vj-1,vj]. A graph G is connected if for each pair of vertices
v,w € Vg there exists a path as above such that vp = v and v, = w.

A path P is closed if v, = vg. A cycle is a closed path such that no vertex
appears more than once except for v, = vp.

A tree is a simply connected graph [Sp], or equivalently a graph
without any cycle. A tree is linear if every vertex of degree strictly greater
than 2 lies along a single embedded arc.

A spanning tree of a graph G is a subgraph H of G which is a tree and
such that Vg = V.

Proposition 1.1.2. Every connected graph G has a spanning tree.

Proof. We argue by induction on the number n > 0 of edges of G. If n = 0,
then G consists of one vertex and so it is already a spanning tree of itself.
If n > 0, then either G is a tree, and so it is a spanning tree of itself, or
G contains a cycle. In the latter case, we can eliminate one edge of the
cycle and the resulting subgraph is still connected and it has n — 1 edges.
Hence, it has a spanning tree which is also a spanning tree for G.

|

A topological graph G is a topological space which comes from a graph
G = (Vg,Eg, Fg) by replacing each vertex v; with a point x; and each
edge e with a copy I, of the unitary interval [0, 1] such that the endpoints
of I, are identified with x; and x; if F5(e) = [v;, vj]. The topology of G is
the quotient topology of the disjoint union {x;}; [Ir_ ) -

Remark 1.1.3. Let G be a connected finite topological graph not homeo-
morphic to S! and G’ be the topological graph obtained from G by elim-
inating all the inessential vertices and fusing every pair of edges sharing
the same inessential vertex into a single edge. Then, G = G'.

Observe that if G = S1, then all the vertices of G are inessential so if we
remove all of them we do not have even a graph anymore.

Given a connected topological graph G, it is possible to think of it as
a linear graph in R"” with n = |V(;| as follows.
Assume Vg = {vy,...,v,} and consider the canonical basis (ey, ..., e;) of
R". We put each vertex v; of G on the head of a vector \e—é fori=1,...,n
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and we let the edges of G be segments joining two vertices v;, v;. In this
way each edge e € E; has unitary length. Then, we define the metric dg
on G by setting for every p,q € G

dc(p,q) == AI?L“ L(A),
rq

where A, is the collection of all poligonal arcs in G between p and g and
L denotes the Euclidean length.
Notice that d is independent on the specific indexing of V.

1.2 Complexes

A closed n-cell (¢, hz) consists of a topological space ¢ and a homeomor-
phism hz: B" — ¢. We indicate by Intc the interior of ¢, that is the image
hz(Int B") of the interior of B" and by Bd ¢ the boundary of ¢, that is the
image h:(Bd B") of the boundary of B".

An open n-cell (c, h;) consists of a topological space ¢ and a homeomor-
phism h.: Int B" — c. Notice that the interior of a closed n-cell is an open
n-cell such that he = hg| e -

A finite CW-complex K is a topological space together with a partition
of it into disjoint open cells such that:

i) K is Hausdorff;

ii) for each open n-cell (¢, h.) C K, there exists a characteristic map
e.: B" - K

such that e¢|gn = he and ec(Bd B") is contained into a finite union
of open cells of dimension less than 7;

iii) a set A is closed in K if and only if AN is closed in ¢ for any open
n-cell (c, he).

The finiteness condition in ii) is called “closure finiteness” and con-
dition iii) determines the so called "weak topology” with respect to the
collection of the closed cells (¢, hiz). These two expressions are at the ori-
gin of the term "CW-complex".

The dimension dim K of a CW-complex K is the maximum of the dimen-
sions of its cells.
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A subspace L is a subcomplex of K if it is a union of cells of K which is still
a CW-complex.

In particular, for every i < dim K, the subspace K' is constituted by the
union of all the cells of K of dimension at most i and it is a subcomplex
of K called the i-skeleton of K.

Given a topological space X and a continuous function f: Bd B" — X,

the notion of attaching an n-cell to X consists of the topological union X LI
B" quotiented out by the minimal equivalence relation which identifies
each point x € Bd B" with f(x) € X. The resulting space is denoted by
XU f B".
A finite CW-complex K can be realized by inductively constructing its
skeleta. Namely, the n-skeleton K" can be obtained by attaching each
n-cell (c,h.) of K to K"~! via the attaching map f. = ec|pqpr: BdB" —
K1,

Let K be a finite CW-complex of dimension n, we define the Euler
characteristic of K, denoted by x(K), as

where n; indicates the number of i-cells of K.

Consider a unit interval I in R and the standard cube I" in R".
An n-cube (c, h;) consists of a topological space ¢ equipped with a home-
omorphism h. : I" — c.
An (n — 1)-face r of I" can be identified by two parameters k and i, where
k=1,...,n indicates the direction and i = 0, 1, such that

ro={tel"|t =0}

and
k1 = {t - In|tk = 1}

We define a natural parametrization of the face ry; as follows:

Pki: (e ki S.t. (tll---rtn—l) — (tlr---/tk—lri/ bt - - -/tn—l)-

An (n —1)-face (d,hy) of (¢, h.) consists of the topological space d =
he(ry.;) equipped with a homeomorphism hy; : ["™1 — d such that h; =
hc (0] Pk,i'
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Definition 1.2.1. Let (¢, k) be an n-cell in K and (d, h;) an (n — 1)-face
of (c,h.) whose characteristic maps are e.: I" — K and e;: [""! — K
respectively.

A finite cubical complex Q is a finite CW-complex such that each n-cell
(¢, hc) of Q is an n-cube and each (n — 1)-face (d, hy) of (c, h¢) is an (n —
1)-cell of Q with characteristic map e; = ec|,, , up to Euclidean isometries
of "1,

The standard n-simplex A" is a subset of R"*! such that

A = {(to,tl,...,tn) e R"1:

n
1=

=11 >0 VizO,...,n}.
0

Consider an (n — 1)-face r of A", then it can be identified by a single pa-
rameter k indicating the direction, k = 0,...,7n such that r, = {t € A" 1 :
ty = 0}. An n-simplex (o,hy) is a topological space ¢ equipped with a
homeomorphism h,: A" — .

An (n —1)-face (p,hy) of (0,hy) is the topological space p = hy(rx)
equipped with a homeomorphism /,: A"~ — p. It can be given a defini-
tion of simplicial complexes analogous to that of cubical complex.

Definition 1.2.2. A finite simplicial complex K is a CW-complex such that
each n-cell (c,hy) of K is an n-simplex and each (n — 1)-face (p,h,) of
(0,he) is an (n — 1)-cell of K with characteristic map ¢, = ey, up to
isometries of A",

Now consider R", and let {vy,...,v,,} be a set of m affinely indepen-
dent points with m < n. An m-simplex ¢ in R"” spanned by vy,...,v; is a
subset of IR” such that

m m
a:{xe]Rm: x:Ztivi where Ztizl,tizOforalli}.
i=1 i=1

A 0-simplex in R" is just a point v;. A 1-simplex spanned by vy, v, is the
line segment joining v; and v,. A 2-simplex spanned by vy, v;,v3 is the
triangle with vertices vy, v, v3 and so on.

Any non-empty subset of {v1,v2,...,v,} of cardinality p < m spans a

p-simplex p called a p-face of . We denote this by p < ¢.
A simplex T is a coface of a simplex ¢ if ¢ is a face of 1.
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Definition 1.2.3. A finite simplicial complex K in R" is a subspace given by
the union of a finite collection of simplices in R" such that

i) if p < o and o € K then also p € K, i.e. every face p of a simplex ¢
in K is a simplex in K itself;

ii) if o, T € K then 0N 7 is empty or a face of both ¢ and 7, and so it is
itself a simplex in K.

Remark 1.2.4. Observe that according to Def. 1.2.3, a simplical complex in
R" is univocally determined by its vertices, while in Def. 1.2.2 there was
the possibility to have distinct simplices sharing the same vertices, indeed
the characteristic maps were not necessarily injective on the boundary.
This means that the two definitions are not equivalent, but a simplicial
complex in IR" is a particular case of a simplicial complex seen as a CW-
complex.

A definition equivalent to Def.1.2.3 is that of abstract simplicial com-
plex.
An abstract finite simplicial complex S is a collection of finite non-empty
sets such that if A is in S, then also every non-empty subset of A isin S.
An element A in § is said an abstract simplex of S. The dimension of A in
S is the cardinality of A minus 1.
The 0-simplices in S are the vertices of S. Each simplex of S that is a sub-
set of A € S is called a face of A.

Let K be a finite simplicial complex in R” and & be the collection of finite
sets of vertices {vy, ..., v} which are vertices of some simplex of K. Then,
§ is an abstract simplicial complex and it is called the vertex scheme of K.
Equivalently K is said the geometric realization of S. [Le]

1.3 Homotopy and fundamental group

Let X, Y be two topological spaces. A homotopy of X into Y is a continuous
map
H: X x[0,1] =Y.

Equivalently, H can be seen as a continuous family of continuous func-
tions (ht: X — Y)cqo,1) such that h(x) = H(x,t) for each x € X and for
each t € [0,1].
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Given two continuous functions f, f': X — Y, then H is a homotopy
between f and f'if hp = f and hy = f'.
If there exists a homotopy between f and f’, then the functions f and f’
are said homotopic and we write f ~ f’.
It can be easily verified that homotopy relation ~ is a compositive equiv-
alence relation.

Two topological spaces X and Y are said homotopy equivalent if there
exist two continuous functions f: X — Y and ¢: Y — X such that go f ~
idX and f ocgx™ ldy

If X is homotopy equivalent to a single point, then X is said contractible.

Definition 1.3.1. A weak deformation of a topological space X into a sub-
space A of X is a homotopy

H:Xx[0,1 =X
such that the following are satisfied:
i) H(x,0) = x forall x € X,
ii) H(x,1) € Aforall x € X,
iii) H(x,t) € Aforall x € A and for all t € [0,1].

Then A itself is said a weak deformation of X.

A strong deformation of X onto A is a weak deformation which satisfies
also
H(x,t) = xforall x € A and for all t € [0, 1].

Then A itself is said a strong deformation of X.
Equivalently, we can say that A is a weak deformation of X if there
exists a continuous map r: X — A such that roi ~ idy and ior ~ idx

where i: A — X is the inclusion map. Hence, A and X are homotopy
equivalent.

Let X be a topological space, * a point in X and Q(X, *) the set of loops
in X based at point * :

Q(X, %) = {w: [0,1] = X s.t. w continuous and w(0) = w(1) = *}.

Then, the set Q(X, %) equipped with the concatenation of loops and quo-
tiented out by homotopy relation mod {0,1} forms a group called the
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fundamental group of (X, *), which is an homotopy invariant. We denote
it by
7'[1(X, *) = (Q(X, *), )/ 2{0,1} .

Notice that if X is a path connected topological space and *, *’ are two
points in X, then there is a path between * and *" and it can be induced
an isomorphism between 711 (X, *) and 711(X, ). Thus, the fundamental
group 711 (X, *) is independent on the choice of the base point *. For this
reason, from now on we are going to use the notation 711 (X) instead of
111 (X, *) while considering path connected topological spaces.

The first homology group Hy(X) is the abelianization of the fundamen-
tal group 711(X) and the Euler characteristic of X is related to the homol-
ogy groups as follows

x(X) =) _(—1)"rank Hy(X).

n

Let us remind an essential result for computing fundamental groups
of path connected topological spaces.

Theorem 1.3.2. (Seifert-Van Kampen Theorem) [Mu] Let X be the union
of two open, path connected subsets Xy and X, whose intersection X1 N Xy is
non-empty and path connected. Let x( be a point in X1 N X, and let

1: X1NXo =Xy and  jp: X1N Xy — Xo

be the embeddings into X1 and X, respectively.

Then,
s (Xl) * 771 (Xz)

({(w)ja(w)™, wem(Xi1NX2)})

7T1(X) = N

Proposition 1.3.3. A CW-complex X is connected if and only if its 1-skeleton
X' is connected.

Proof. First observe that attaching an m-cell (¢, h.) with m > 1 to any
space X does not change the number of components of the space. In-
deed, considering the characteristic map e.: B — X, we can notice that
ec|Bd g 1S continuous and its image must be entirely contained in a single
connected component of X since Bd B” is connected.

Then, the proposition immediately follows by induction on the number
n > 0 of the cells of X whose dimension is greater than 1. O
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Lemma 1.3.4. Let X be a path connected space and X' = X Uy. ¢, with (c, h)
an i-cell with i > 3. Then, 1 (X) = m(X').

Proof. First notice that X’ is connected by the previous proposition.

Let us consider the characteristic map e.: B' — ¢ and a loop

w: [0,1] — X such that [w] € m1(X’).
We call A} = Intcand Ay = X' — {p} where p = ¢,(0), then we can write
X' = A1 UA;.
Observe that A; is path connected since it is the interior of a cell of di-

mension i > 3, while ¢ — {0} strongly deforms to Bd c.
Hence, by applying the characteristic map e, we have that

X' —{p} = XUy, (c—{0})
deforms to
XUp, Bde = X.
So, A; is path connected since so is S'~1, being i — 1 > 2.

Moreover, A; N A, is homeomorphic to Int B — {0} ~ S~!, and hence
A1 N Aj is path connected for i > 2.

Then, 7T1(A1) = %, 7'(1(A2) = 7T1(X) and 7T1(A1 N Az) = 7'(1(Si_1) =0.
Thus, we can apply Seifert Van Kampen theorem to get

7(1(A1) * 7'[1(A2)

0 @)y (@), wem(AnAD))
- 0% 7 (X) B
= T = m(X). .

This lemma guarantees that while attaching cells of dimension greater
than or equal to 3 the fundamental group is left unchanged.

Proposition 1.3.5. Let X be a connected CW-complex of dimension k. Then the
inclusion X'~1 C X' induces an isomorphism rt1(X'~1) — my(X") for i > 3.
Hence, we have

7T1(X) = 71 (Xz)

Proof. By Lemma 1.3.4, we know that the fundamental group of a path
connected space X is unaffected by attaching an i-cell of dimension i > 3.
Hence, by induction on the number of cells of X of dimension i > 3, the
proposition follows directly. O



10 Chapter 1

1.4 Presentations of groups

A presentation of a group G consists of a set S of generators and a set R
of relations such that any relation p € R is an element of the free group
F(S) and G is isomorphic to the quotient group F(S)/N(R), where N(R)
is the normal subgroup generated by R. We denote a presentation of G by

G=(S|R) = 2.

Determining whether two group presentations define isomorphic groups
is undecidable.

However, given a presentation G = (B1, ..., Bulp1,--.,pk) for G, it is pos-
sible to obtain other presentations for G by applying the following oper-
ations called Tietze transformations.

i) Adding a generator: if a can be written in terms of Bi,...,B, as
« = W(B1,...,Bn), then we can insert « as an additional genera-
tor together with the relation tx’lW(ﬁl,. .., Bn) and then we have
the following new presentation for G

G={(B1,...,.Bualor,...,00 0 *W(B1,...,Bn)).

ii) Removing a generator: if B; can be written in terms of the other gen-
erators B1,...,Bi—1,Bi+1,---Pn as

Bi=W(Bi,---,Bi-1,Bit1,---Bu),

then we can delete ; and replace it by W(B1,...,Bi—1, Bi+1,--- Bn)
in the relations containing f;.

iii) Adding a relation: if ¢ is a relation which can be derived from
01, ..., Pk then we can insert o and we have the following new pre-
sentation for G

g - <,Bll---/,31’l|p1/"'lpk/0->'

iv) Removing a relation: if p; is a consequence of p1,...,0i—1,Pi+1,- - -, Lk
then we can delete p;,

g — <,31;---/,Bn|P1,---rPi—eri—&-lw--/Pk>-

It is possible to derive an alternative formulation of Seifert-Van Kam-
pen Theorem in terms of group presentations.
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Theorem 1.4.1. (See [CF], Theorem 3.6)
Let 71'1(X1, XQ) = <0€i’/\j>, 7T1(X2, XO) = <,31‘]/l]> and 7T1(X1 N X2) = <’)’1’1/]>
Then

m (X U Xa) = (ay, BilAj, pj, ji(vi)ja (i) ).

Consider a connected graph G, a maximal spanning tree T and a ver-
tex v of T. Let ey, ..., e, be the edges of G not contained in T such that
Fg(e;) = [v;, w;]. We consider the paths g; from v to v; and h; from w; to v
inside the tree T. Then we can take the classes [f;] of loops f; = gieih;.

Proposition 1.4.2. The fundamental group m1(G) is the free group on the

classes [f1],. .., [ful-

Proof. It can be proved by induction on the number n of edges of G not
contained in T.

For n =0, G is a tree and hence 711(G) = 0.

We assume that the thesis holds for n — 1 and we prove it for n edges out
of T.

For eachi =1,...,n we choose a point x; € ¢; and we consider

Al =G—{x1,...,xy1} and Ay =G —{x,}.

Then, A1 and Aj are open, Ay N Ay ~T, A1 ~TUe,and Ay >~ G — ey
By inductive hypothesis, m1(Ay) is the free group on [fi],..., [fu-1]-
Moreover, 711 (A1) is the free group on [f,] and 711 (A1 N Az) = m(T) = 0.
Hence, by applying Seifert Van Kampen theorem, we get that 71(G) is
the free group on [f1],...,[fs]- O

Proposition 1.4.3. Suppose that T is a graph with a single vertex of degree
greater than 2, then the fundamental group 711(T) is the free group on 1 — x(T)
generators.

Proof. First, notice that Prop. 1.4.2 means that a connected graph G is
homotopy equivalent to a wedge of finitely many copies of S'. Hence, in
this case I' is homotopy equivalent to a bouquet of loops. If we compute
the Euler characteristic we get x(I') = 1 — n where n indicates the number
of loops constituting the bouquet. So, m1(T) is a free group on n =
1 — x(T') generators. O

By Prop. 1.3.5, remind that a group presentation for 711 (X?) is also a
group presentation for 717 (X).
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Lemma 1.4.4. Let X be a path connected topological space and let us attach a
2-cell (¢, h.) to X via the attaching map f.: Bdc — X.
Suppose a is a generator for t1(Bd c), if 1y (X) = (B1,- .-, Bulp1,---,pn) then,

7'1,'1(}<UfC C) = (ﬁl,...,ﬁn|p1,---,Pn,U>

where o is an expression for fei(a) € 111(X) written in terms of By, ..., Bn-

Proof. Notice that 7r1(c) = 0 and that by hypothesis, 711 (X Nc) = 71 (Bd ¢).
Hence, by applying Seifert-Van Kampen theorem in terms of group
presentations, we have that a presentation for (X Uy, c) is exactly

(B1,.--,Bulp1,---,0n,0) where o = ji(a)j2(a) 1. O

Proposition 1.4.5. Let X be a connected CW complex, B1, . .., Bn the generators
for the free group 711(X') as given in Prop. 1.4.2 and (cq,he,), - .., (cx, he,) the
2-cells of X. For each i = 1,...,k, let a; be any generator for t1(Bdc¢;) = Z
and o; be the expression of «; in terms of By, ..., Bn. Then,

7T1(X) = <ﬁ1,...,‘3n|0'1,...,0'k>.

Proof. Since X! is a graph, then by Prop. 1.4.2, the generators B, ..., Bn
are given by the edges out of a maximal spanning tree T of X'.

Remind that X? is obtained by attaching to X' all the 2-cells of X and also
m(X?) = 711(X) by Prop. 1.3.5.

Then, we prove the statement by induction on the number k of 2-cells of
X. For k = 0, we have just 71(X') = (B1,...,Bu). We assume that the
thesis holds for k — 1 and we verify it for k.

Let X} indicate the set resulting from attaching k 2-cells to X!, then

1 (Xg) = m(Xe_q Uy, o),

and by inductive hypothesis 71 (X} ;) = (B1,...,Bul01, ..., 0k_1) where
o1,...,0% are expressions for ay,...,ax_1 in terms of By,..., By. Then, by
applying again Lemma 1.4.4 the thesis follows. O

In summary, the generators of 711 (X?) are the edges outside of a maxi-
mal spanning tree T of X! and the relations of 711 (X?) come from looking
at the boundaries of the 2-cells of X? and writing them as words in terms
of the generators.
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1.5 Classical Morse theory

Classical Morse theory was developed in the 1920s and 1930s by the
American mathematician Marston Morse [Mo] with the aim of deducing
topological information about a differentiable manifold M by the study
of a smooth real-valued function f: M — R defined on M.

The basic idea consists in considering a differentiable manifold
M C R”" and a collection of parallel hyperplanes and slicing M with
these hyperplanes in order to extrapolate information by the variation of
the shape of each single slice of M.

For example, let M be a torus and f: M — R be the height function
which associates to each point of M the corresponding height with respect
to a plane V tangent to M. We denote by M* the set of points x of M such
that f(x) < a. We consider the points p,q,r,s in M as in Figure 1.5.1, then
the following hold true:

1) ifa < f(p), then M* = Q;
2) if f(p) < a < f(g), then M” is homeomorphic to a 2-cell;
3) if f(q) < a < f(r), then M* is homeomorphic to a cylinder;

4) if f(r) < a < f(s), then M* is homeomorphic to a compact manifold
of genus 1 having a circle as boundary;

5) if f(s) < a, then M is the full torus.

In general, given a smooth manifold M and a smooth function
f: M — IR, apoint x in M is called a critical point of f if the induced
map fi: TeM — Tp(,)R is zero.

2
A critical point x is called non-degenerate if the Hessian matrix (%(x))
i0%j
with respect to some local coordinates xy, ..., x; is non-singular.

The function f is a Morse function if all its critical points are non-
degenerate.

Lemma 1.5.1. ([Mi], Lemma 2.2) Given a smooth function g: M — R and
an ¢ > 0, there always exists a Morse function f: M — R such that
g(x) — f(x)| < eforall x € M.
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Figure 1.5.1: Torus M tangent to a plane V at the point p.

The index A of a point p with respect to a smooth function f is the
maximum dimension of a subspace of T, M such that the Hessian of f is
negative definite.

Two main results in classical Morse theory are the following:

Theorem 1.5.2. ( [Mi], Theorem 3.1) Let f: M — R be a smooth function and
a < b € R. If there are no critical points in f~1([a, b]), then M" is diffeomorphic
to MP. Moreover, there exists a strong deformation of M? onto M*, and hence
the inclusion map i: M* — MY is a homotopy equivalence.

Theorem 1.5.3. ( [Mi], Theorem 3.2 ) Let f: M — IR be a smooth function
and p a non-degenerate critical point of f of index A. Suppose f(p) = ¢, if p
is the only critical point contained in f~'(c —e,c + €) for some ¢, then, for e
sufficiently small, M is homotopy equivalent to M with a A-cell attached.

Observe that the points p, g, r, s in Figure 1.5.1 are non-degenerate crit-
ical points of f and the topology of M“ changes from one case to the
following one by attaching a cell to M” as soon as we cross a critical non-
degenerate point.

In particular we can pass from 1) to 2) by attaching a 0-cell, from 2) to 3)
and also from 3) to 4) by attaching a 1-cell, and finally from 4) to 5) by
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attaching a 2-cell.

In this sense, classical Morse theory is able to extract topological issues
about M from the study of a Morse function.

In general, as a consequence of the two theorems above, we have the
following.

Theorem 1.5.4. ([Mi], Theorem 3.5) Let f be a smooth function on M with no
degenerate critical points, if each M* is compact, then M is homotopic equivalent
to a CW-complex with one cell of dimension A for each critical points of index A.

1.6 Discrete Morse theory

In 1995 another American mathematician, Robin Forman, published his
first paper [Fogs] about a new adaptation of classical Morse theory he
called discrete Morse theory.

The main difference from the original theory consists in considering
CW complexes instead of manifolds and replacing smooth functions by
discrete ones. The convenience in substituting the main object is reducing
its complexity and at the same time not losing important information.

For the sake of simplicity, we focus on discrete Morse theory based on
simplicial complexes, but all the following definitions can be adapted to
the more general case of CW complexes.

Definition 1.6.1. Let K be a simplicial complex, a function f: K — R is
a discrete Morse function if, for every n-simplex o € K, the following are
satisfied:

i) Up =#{t >0 | f(0) > f(T), where Tis an (n+ 1)-simplex } < 1;

ii) Ly =#{p < o | f(p) > f(0), where p is an (n — 1)-simplex } < 1.

Condition 7) states that for each n-simplex ¢ in K, for all the simplices
T such that dimo = dim T — 1, function f can associate to T a real value
smaller or equal to f(¢) at most in one single case.

Similarly, condition ii) states that for each n-simplex ¢ in K and for all
the simplices p such that dimp = dim ¢ — 1, function f can associate to p
a real value greater or equal to f(c) at most in one single case .

It means that every time we are considering two simplices with those
characteristics, a discrete Morse function f associates a greater value to
the simplex with greater dimension a part from at most one exception.
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1 0 1 2 3 2

Figure 1.6.2

Example 1.6.2. In Figure 1.6.2 we have applied to the same 1-simplicial
complex K, a function f: K — R on the left and a function f "*K—= Ron
the right.

We can say that f is not a discrete Morse function because the edge

f£~1(0) violates condition ii) and the vertex f ~1(3) violates condition i) in
Def. 1.6.1.
On the other hand, f’ is a Morse function since the edge f’ _1(3) has
greater value than both its vertices and the edges f’ ! (1) have both one
vertex with bigger value and one with smaller value, so both conditions
i) and ii) in Def. 1.6.1 are satisfied.

For any simplicial complex K with a discrete Morse function f and
¢ € R, we define the level subcomplex by

K(c) = Ugry<c Yoz 0
where o, T are simplices of K.

Definition 1.6.3. Given a simplicial complex K and a discrete Morse func-
tion f: K — R, an n-simplex ¢ in K is

i) critical if Ly = U, = 0;
ii) redundant if L, = 0 and U, = 1;
iii) collapsible if L, =1 and U, = 0.
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Observe that Def. 1.6.3 means that a simplex ¢ is critical if the cor-
responding discrete Morse function f associates greater values to each
simplex T with higher dimension than ¢ and at the same time, associates
smaller values to each simplex p with smaller dimension than ¢.

Consider again the discrete Morse function f’ in Figure1.6.2 on the
right, we can observe now that the vertex f’ _1(0) is a critical 0-simplex
and edge f’ ~1(3) is a critical 1-simplex.

Let K; be the set containing all the i-simplices, a discrete vector field is a
map W: K — KU {0} such that

i) for each i, W(K;) C K;;1 U {0},

ii) for each i-simplex o € K;, either W(o) = 0 or ¢ is a regular face of
W(e),

iii) if o € ImW, then W(o) =0,
iv) for each i-simplex o € K;, then #{p € K;_1: W(p) =0} < 1.

The following Theorems correspond respectively to Theorems 1.5.2, 1.5.3,
1.5.4 in classical Morse theory.

Theorem 1.6.4. ([Fo], Theorem 3.3) If there are no critical simplices o with
f(o) € (a,b], then the level subcomplex K(a) is a strong deformation of K(b).

Theorem 1.6.5. ([Fol, Theorem 3.4) If o is the only critical n-simplex such that
f(o) =cand 0 € f~1(c—¢,c+¢) for some e > 0, then for all e sufficiently
small, K(c + €) is homotopy equivalent to K(c — €) with an n-cell attached.

From the previous two lemmas next theorem follows easily:

Theorem 1.6.6. ([Fo], Corollary 3.5) Let K be a simplicial complex with a dis-
crete Morse function f: K — R. Then, K is homotopy equivalent to a CW-
complex with exactly one cell of dimension p for each critical simplex o € K of
dimension p.
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CHAPTER 2

Braid groups and their presentations

In this chapter we first introduce classical definitions of configura-
tion spaces and braids and discuss how these two concepts are related
and then, in the last section, we show some recent results concerning the
problem of computing presentations for braid groups on graphs. Almost
all of these statements will be proved again in the next chapter following
a different approach.

2.1 Configuration spaces and braids

Let us give the definition of configuration space on a metric space as
follows.

Definition 2.1.1. Let (X,d) be a metric space. The labeled configuration
space of n points in X is

Cu(X) :=={(x1,x2,...,x0) € X" | x; # x; for i #j}.

The configuration space C,,(X) of n points in X is the quotient of C,(X) by
the natural action of the symmetric group

Cn(X) 1= Cy(X)/Zs.

Given two configurations x = {xq,...,x,} and y = {yo, ...,y } in C4(X),
the distance between x and y is defined as

de,(x)(x,y) = min max d(x;,Yo(;))-

Let us prove that d¢, (x) is a metric on Cy(X) :

i) de,(x)(x,y) > 0 Vx,y € Cy(X) by non-negativity of the metric d.

19
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ii) de,(x)(x,y) = 0 if and only if min,ey, max;d(x;,y,;) = 0
if and only if there exists a permutation ¢ € X, such that
max; d(X;,Ys;y) = 0 if and only if x; = y,; for all i if and only
if x =y.

iif)

de,(x)(x,y) = min maxd(x;, Yo(;y) = min maxd(X,-1(;), Yo(o1(i))) =

ceEY, i ceEY, i
min maxd(x,-1(;), ) = min maxd(y;, x;1() =
(172121: max A(Yi, X)) = de,(x) (Y, X)-

iv)

dC (X )(x Z) +dC (X)(Z y) -
min maxd(x;, z ()) + min maxd(z ()z]/a’(v(i))) -

ocEL, i o'eXy o(i)
. Py ) S
min maxd(xi, o)) + min maxd(ze(), Yo(aiy) >

min maxd(xl,ya/( ())) = dcn(x)(x,y). O

ooex, i

We define a corresponding metric dfn( x) as follows
dcn( )(x y) = rr11ax dx(x;,v;).

Notice that the canonical projection 77: C,(X) — Cn(X) is a regular
covering. For any configuration x = {x1,...,x,} in C,(X), we take a
6 > 0 satisfying 0, < jmin;;d(x; xj). Then, B(x,8) C Cy(X) is well
covered by 7. Let y € C,,(X) such that y € B(x,J), then if we restrict on

each sheet of the covering, the metric dCNn( X) coincide with d¢, (x).

Observe that, 71p(, ) is invertible since it is an homeomorphism, and its

—L associates a numbering (x1,...,x,) to x = {x1,...,x,}.

inverse 7'L'| P

Notice that we can extend this numbering to all the points in B(x, ).

Hence, if d¢, (x)(x,y) <, there is a numbering associated to y by 4 3}1

—L is an isometry since X is locally isometric to 77~ (X).

Moreover, T 7T g

Fixed two base points * € C,(G) and % € C,(G) such that 77(%) = *, an
n-braid B is a loop w : [0,1] — C,(X) based at %, while a pure n-braid P is
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aloop w : [0,1] — Cy(X) based at %.
The set of n-braids equipped with the operation of concatenation of loops
and quotiented out by the homotopy equivalence relation forms a group
called the braid group and denoted by B, (X). In other words, the braid
group is the fundamental group of the configuration space of n points on
X:

Bu(X) = m(Ca(X)).

Similarly, the pure braid group P,(X) is the fundamental group of the
labeled configuration space:

Pu(X) = m1(Ca(X)).

Up to the injective group homomorphism induced by the covering 77, we
have the inclusion P, (X) C B, (X). Moreover, the path lifting property of
7t determine a group homomorphism o : B,(X) — %, such that P, (X) =
kero.

2.2 Classical braid groups

The theory of braids was classically developed for X = R? starting from
the seminal work of Artin [Ar]. Braids on R? admit a geometrical inter-
pretation in IR3 as described below.

In R3, let us consider n points of coordinates (1,0,0) and n points of co-
ordinates (0p(i),0,1) fori=1,...,n and op € L,.

An n-braid B = Ay U AU ---U A, is a disjoint union of n arcs A; from
(1,0,0) to (0p(i),0,1) such that the z-coordinate is monotonically increas-
ing along each A;.

Two braids B, B’ are equivalent if there exists a continuous family of
braids (Bs)sc[o,1) such that By = B and By = B'.

The composition of two braids By, B is given by putting B, on the top of
B; and then rescaling their union, that is

BB, = (1,1,1/2)(B; U (By + (0,0,1))).

A presentation for the braid group B, = B, (IR?) was given by Artin [Ar],
as follows:

By =(01,...,0u | 0:0:110; = 0;410,0;11, 0i0j = 0j0; for i +1 < j ).

Here, the generator o; represents the n-braid where the i-th strand crosses
over the (i + 1)-th strand.
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1 i i+1 n

Figure 2.2.3: Diagram of the n-braid o;.

As a natural generalization of B, an Artin group A is a group with a
presentation of the following form:

N—
m,‘]' mﬁ

A=(sy,...,54 | SiSjSi -+ = 8SiSj . - for i # j)
~— N——

where m;; > 2 is even and m;; = mj; or m;; = oo.

A right-angled Artin group has a presentation in which m;; € {2, 00} for
all 7,j. It means that all the defining relations are commutators of the
generators: s;s; = s;s;.

2.3 Braids on graphs

In the 1990’s, some mathematicians started working on the problem of
safe control schemes for automated guided vehicles (robots). The aim was
finding the best way to let the robots move in their workspace avoiding
collissions and at the same time guaranteeing a certain efficiency. The
workspace was modelled by configuration spaces on manifolds but, in
order to reduce the sophistication required for the production of these
robots, it was imagined to let them move only on guidepath wires and so,
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those mathematicians started studying configuration spaces on graphs.
In particular, we are going to see some results obtained by Robert Ghrist
in [Ghgg] and [Ghoy], concerning configuration spaces on graphs and
hence, concerning braids on graphs.

From now on G = (V;, Eg, Fg) will always denote a connected topo-
logical graph not homeomorphic to S! and for the sake of simplicity, we
rename Vg =V,Eg =E,F; = F.

Theorem 2.3.1. ([Gh99], Theorem 2.6 and 3.3) Let G be a connected graph and
¢ be the cardinality of {v € V : deg(v) > 2}. Then, the configuration spaces

Cn(G) and Cy,(G) strongly deform on a complex of dimension at most £.

Sketch of proof. The result is first proved for trees and then generalized
to any generic graph G by induction on the number of points n of C,(G),
the number of edges which are incident to a vertex separated from a
terminal vertex by an edge and on the number of vertices with degree
greater than 2.

Observe that G cannot be homeomorphic to S! indeed, in this case, G
has no vertices of degree greater than 2, but both its configuration spaces

Cn(G) and C,(G) strongly deform on S'.

Corollary 2.3.2. For any graph G with a single vertex v of degree k > 2, the
configuration spaces C,(G) and C,(G) strongly deform on a graph.

The graphs with a single vertex of degree greater than 2 can be distin-
guished in the following families:

1) Ty with k > 3, the radial tree consisting of k terminal vertices
v1,...,0% a single vertex vy of degree k and k edges such that each
edge ¢; joins vy and v;;

2) Ly with k > 2, the graph consisting of k loops all attached to a single
vertex vg of degree 2k;

3) Ggn with k,h > 1, the graph consisting of k terminal vertices
v1,...,0 a single vertex vy of degree greater than 2, h loops at-
tached to vy and k edges such that each edge ¢; joins vy and v; for
i=1,...,k In particular the degree of v is equal to 2h + k.

In these cases it is possible to determine the braid groups by computing
the Euler characteristic of the graphs by Prop. 1.4.3.

Ghrist first in [Ghgg] and then also in [Ghoy], proved the following
result.
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Proposition 2.3.3. Let Ty be the radial tree consisting of k edges (not loops)
attached to a central vertex vy of degree k. Then, the pure braid group Py, Ty is
isomorphic to a free group on

1+(nk+1—k—2n)%

generators.

Proof. The Euler characteristic of C,(T) is computed using a double in-
duction on n and on k, fixing the point on the k-th edge of T which is
the farthest from the central vertex vy. So it can be obtained the following
expression:

n—1

X(Cu(T0)) = X(Cu(T)) + mx(Cor(Te)) —n [[(k+i—2)
i=1

where the first term is due to the case where there are no points on the
interior of the k-th edge, the second term is given by fixing one point on
the k-th edge and the product is given by fixing one point on the central
vertex vg. O

In [Ghgg], it was hinted that if we consider the configuration space
Cn(Ty) we need to reduce x(Ty) by a factor of n!.
This result was formalized and proved by Doig who constructed an ex-
plicit deformation retract of Cy,(Ty).

Proposition 2.3.4. ([Dol) The braid group B, Ty is a free group on

(n+k—2)!

generators.
In [Ghgg], Ghrist also gave the following:

Conjecture 2.3.5. The braid group of any tree T is an Artin braid group.

In 2000, Abrams disproved this conjecture and revised it to apply only
on planar graphs in his Phd Thesis, which unfortunately, we did not
manage to consult.

The following further result was then proved in 2004 by Connoly and
Doig.
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Proposition 2.3.6. ([CD]) The tree braid group B,T is a right-angled Artin
group if T is linear.

Until talking of configuration spaces which can be deformed onto a
graph, we can describe them easily, but in general we do not.
In order to classify the configuration spaces of generic graphs, Ghrist and
Abrams have referred to the following approximation result.

Recall that any graph G is a 1-dimensional CW complex. Then, the n-
fold product of G inherits a cubical structure from G in such a way that
each cell is a product of n non necessarily distinct cells in G. But, as
soon as we remove the diagonal, the space C,(G) does not have a cell
structure anymore. Anyway, it is possible to lead back to a convenient
approximation of the whole configuration space.

Let A = {(x1,x2,...,x4) € G" | x; = xj fori # j} be the diagonal of
G" and A’ denote the union of the open cells in G" whose closures inter-
sect A.

The discretized configuration space of n points on G is the maximum sub-
complex of C.(G) which does not intersect A, and we denote it by
D,(G) =G" — A,

Hence, any k-cell in 15,1(G) has the form ¢; X - -+ X &, where each ¢; is a
cell of Gand ¢;N¢; = @ for i # j.

The unlabeled discretized configuration space D, (G) is the quotient of D,,(G)
by the action of %;,.

In his thesis, Abrams proved the following theorem which later was
proved again also by Prue and Scrimshaw in [PS].

Theorem 2.3.7. (Subdivision theorem)
For n > 2, let G be any graph with at least n vertices. Then the configuration

space Cn(G) (respectively C,(G)) strongly deforms onto the discretized space
D, (G) (respectively D, (G)) if G is sufficiently subdivided, in the following
sense:

i) each path between distinct essential vertices has at least n — 1 edges;
ii) each cycle containing at least one essential vertex has at least n + 1 edges.

The subdivision theorem implies that if a graph G is sufficiently sub-
divided, C,,(G) (respectively C,(G)) is homotopy equivalent to D, (G) (re-
spectively D, (G)).
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Sketch of the proof in [PS]. First it is proved that assuming G sufficiently
subdivided, then there exists a CW-structure on C,(G) such that the in-
clusion map i: D,(G) — C,(G) is a cellular map, i.e. sends i-skeleta
in i-skeleta for all i. Then it is proved that the inclusion map i induces
isomorphisms on all homotopy groups.

In 2005, Farley and Sabalka proved Theor. 2.3.1 by using the Subdivi-
sion theorem and the discrete Morse theory in the following way.
First we have the case of a tree T.
Let us denote by Dn(T)]: the k-skeleton of D, (T) with the redundant k-

cells removed and by D,, (T)I:/C the k-skeleton of D, (T) with the redundant
and the critical k-cells removed.

Theorem 2.3.8. ([FSos5], Theorem 4.3) Let T be a tree and c a critical cell of
Dy(T). Let k = min{ |} ] ,#{v € T°, deg(v) > 2}. Then dimc < k and so

D, (T) strongly deforms on Dn(T)]:.

Sketch of proof. It can be proved that in c there are at least as many
vertices as edges. Since the dimension of c is equal to the number of
edges in c and the total number of cells in c is 7, then dim ¢ < 7.

By definition of critical cell follows also the other bound for dimc.
Then, D,(T) has no critical cells of dim > k and it can be proved that

there is an isomorphism between 71;_4 (Dn(T)I;) and ﬂk(Dn(T)I:,C)- Hence,
D, (T) strongly deforms on D, (T)"

o
Now we see the case of a generic graph G.

Theorem 2.3.9. ([FSos], Theorem 4.4) Let G be a sufficiently subdivided graph
and x(G) its Euler characteristic. Then, D,(G) strongly deforms to a CW-
complex of dimension at most k, where

n+1-x(G)
2
Sketch of proof. First construct a maximal subtree of G such that all
the edges out of T neighbor the vertices of G of degree k > 2. Then, any
embedding of T in the plane induces a discrete gradient vector field such
that every edge in a critical cell contains a vertex of degree k > 2. Hence,
dim D, (G) < k since the dimension of the critical cells of D, (G) is less
than or equal to k with respect to the gradient vector field.
Then, observe that the number of edges out of T is equal to 1 — x(G) and
the dimension of any critical cell of D, (G) is bounded by

n—1+x(G)
2 -

k:min{L |,#{v € G°: deg(v) >2}}.

1-x(G)+ |
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By using again the discrete Morse theory, they proved the following result
regarding presentations for fundamental groups of CW-complexes, which
they used then to compute presentations for the braid groups of trees.

Theorem 2.3.10. ([FSo5], Theorem 2.5) Let X be a connected CW-complex with
a discrete gradient vector field W. Let T be the maximal tree of X consisting of
all the collapsible edges in X and additional critical edges if necessary. Then,

m(X) = (S[R)

where S is the set of positive critical 1-cells not contained in T and R is the set
of certain reduced forms of the boundary of critical 2-cells.

Moreover, the result in Prop. 2.3.6 was widened as follows.

Theorem 2.3.11. ([FS08]) The tree braid group B,T is a right-angled Artin
group if and only if T is linear or n < 4.

Sketch of proof. (<) By Prop. 2.3.6, if T is a linear tree then B,T is a
right-angled Artin group. If T is a tree and n < 4, it follows by Theo-
rem 2.3.8.

(=) It can be proved by contradiction, assuming that T is non linear,
n > 4 and B,T is a right-angled Artin group and then referring to the
cohomology rings and the critical cells of C,(T).
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CHAPTER 3

Presentations of braid groups on graphs
via cubical complexes

In this chapter, we want to reduce the problem of computing a pre-
sentation for the braid group of graphs to just computing a presentation
for the fundamental group of a cubical complex, and hence by Prop. 1.4.5
it is sufficient to study the 1-cells and the 2-cells of the cubical complex.

First, we define a subspace N, (G) of C,(G) consisting of a kind of "nor-
malized" configurations such that, for each edge e of the graph G, the
first and the last point on e of the configuration are inside of two proper
intervals and the intermediate points are uniformly distributed between
them.

In the second section, we define a continuous mapping
®: Cy(G) — Cu(G)

such that In® = N,(G) and we prove that there exists a weak deforma-
tion of C,,(G) into NV,,(G) by using ®.

In the last section we construct a cubical complex Q,(G) homeomor-
phic to N,(G) and we derive that the braid group on G is isomorphic
to the fundamental group of Q,(G). Hence, we are able now to compute
a presentation for the braid group by looking at the 1-cells and 2-cells of
Q,,(G). Finally, in Prop. 3.3.5 we reduce the cubical complex Q,(G) to
a subcomplex which is still homotopic equivalent to Q,(G) in order to
simplify the computing.

3.1 The normalized configuration space NV, (G)

Let G = (V,E,F) be a connected graph not homeomorphic to S! and
C(G) = Uu>0Cn(G) be the set of all finite configurations in G.

Given a configuration x in C(G), we put xy = x NV and similarly, for
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each e € E, we put x, = xNe° the set of points of x contained in the
interior of the edge e.
Notice that x is the disjoint union of xy and the x,’s.

Let v : C(G) — {0,1}V x INF be the mapping sending a configuration
x € C(G) to a couple ny p(x) = ((ny(x))vey, (ne(x))ecr) where

1 ifvex
”v(x):{

0 otherwise

and n,(x) = |x.|. We also put ny(x) = Y ey 1o(x) = |xy].

Definition 3.1.1. Let C,.;(G) C C(G) be the subset of the configurations
x € C(G) such that n.(x) < 2 for each edge e.

Consider an edge ¢ € E between the vertices v,w € V and take

the unique isometry aenw: [—1,3] — e such that aeow(—3) = v and

“e,v,w(%) =w.

If x, # @, then we can write it as x = {&evw(f1), .- '/“B,U,w(tng(x))} such
that —% <hp < e <y < %, where t; is the coordinate of the i-th
point of x. according to the parametrization a, y .

Let us call

o (311
tew = tne(x)' o

Remark 3.1.2. Observe that if v = w, both #; and f,,(,) are denoted by

ten. Then, if we consider the opposite parametrization &, : [—%, %] —e
such that a0 (t) = Xep,w(—t), we still get the same two points denoted
again by t, .

If v # w, and we consider the opposite parametrization a, ., we get for
ten and t,, the same two values found using «, . but the notations t,,
and t,,, are swapped.

Let us set:
_ 1n.(x) —1
te,v = 53
2n.(x) +1 (3.1.2)
; _ 1ne(x)—1 34
T 2mp(x) +1
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We call Iy = [—4,F0] and Lo = [Few, 5] the approaching interval respec-
tively to v and to w with respect to e.

Remark 3.1.3. These definitions are independent on the choice of the
parametrization. Indeed, if we consider parametrization a4, then we
still get the same coordinates f,, and f,, with v and w swapped if v # w.

Definition 3.1.4. Let G be a connected graph. The normalized configuration
space Ny (G) of n points on G is a subspace of C,(G) consisting of the
configuration x € N, (G) which satisfies the properties below.

For each edge ¢ € E with endpoints v and w, consider x, = {x; =
“e,v,w(tl)/- cor X (x) = ae,v,w(tne(x))} such that —% <hH < < tng(x) < %
Then,

i) =3 <ty <Fpand Foo <t () <

N|—

ii) tey = fep if ty, < to, for some edge ¢ # e such that v € ¢
parametrized by &, ;s and similarly fe = £ if tyy > oy for
some edge ¢’ # e such that w € ¢’ parametrized by a , 4.

iii) fp,...,t,,(x)—1 are uniformly distributed between t; and t,, (,) which
means that the subintervals [t;,t;,1] fori = 2,...,n.(x) — 2 have all
the same amplitude.

3.2 The weak deformation of C,(G) into NV, (G)

Now we define a continuous function ®: C,(G) — C,(G) such that
Im® = N,(G) and then we use it to provide a weak deformation of

Cn(G) into NV, (G).

Given an edge e € E of vertices v, w € V, we define the following param-
eters which indicate the distances of t,, and ¢, respectively from the
vertices v and w divided by the amplitude of the approaching intervals

Ie,v/ Ie,w:

s~ 1 ifx, =@
“C7 I min(1, (1/2 4 tey)/(1/2 + E.p)) otherwise

P 1 ifx,=®
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Then we define the approaching parameters d., of v and d,, of w with
respect to the edge ¢ :

(0 if ny(x) =1

dep =<1 ifdeg(v) =1

\min {60, ¢ #est.vee} otherwise,
(0 if np(x) =1

dew =11 ifdeg(w) =1

min {6, ,, ¢ #est. wee'} otherwise.
\

Finally, we put

=41 if dop = 0
“O T I min(1, b0/ dep)  otherwise

o= if dogp = 0
G min(1, 8 /dew) otherwise.

Then, we construct a function ¢ : C(G) — C,.;(G) sending a configuration
x € C(G) to a reduced configuration ¢(x) such that:

a) if n,(x) = 0, then ¢(x), = Q.

b) if n.(x) = 1, thatis x, consists of a single point x1 € x, toy = e = 1
and fe, = tew = 0, then ¢(x), consists of a single point such that:

1 Teo(X)
(x)e = “e’v’w< 2 " Te(X) + Tew(X)
% e . (1 B Tg,w(X) >
“oP\2 re,v(x ) + re,w(x )

) if —3<t1<0

if0<t <3

c) If ne(x) > 2, then

Tew(X) )
e (X) 4+ Tew(x) + ne(x) —1/7

P(x)e = {“&W( B % * (3-2.3)

1 Tew(X)
“e’v’w< 2 e (X) + Tew(x) + ne(x) — 1> '

This means that for each edge e € E, ¢ associates to x, the configuration
@(x), in (3.2.3) consisting of 2 points which depends on the coordinates
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te» and te and on the values of the approaching parameters de o, de,w.

Thus, the number of points constituting a configuration ¢(x) € C,;(G) is
Mred (X) = Leep Min(2, ne(x)) + ny (x).

Now define a function p: C,.4(G) x ({0,1}V x N¥) — C(G) such that
plx,nyp)y ={v eV in,(x) =1} = xy
and moreover,
i) if n, <2, then p keeps the points of x,, that is p(x, ny ). = xe;

ii) if n, > 2, then p adds n, — 2 points on the edge ¢ whose coordinates
are uniformly distributed between t,, and t, .
In this case, we write p as follows:

P(xrnV,E)e =
{aww(@ __k )te,z, n %tw) for k=0, 1, — 1}.

ne_l

e

Notice that x C p(x,ny g), i.e. p keeps each configuration x € C,.4(G).
Moreover, observe that for any configuration x € C,.4(G), the configura-
tion p(x, ny ) is obtained by convex combinations of points of x. Hence,
p is always continuous.

Finally, we define

®: C(G) = C(G)
such that

®=po(pxv).
Proposition 3.2.1. For any configuration x € Cn(G) and any numbering ¥ =
(x1,..., %) € Cu(G) there exists a & > 0 sufficiently small such that, for any
0 <6 < dand forany y € Cu(G) with de, (c)(x,y) < 6, there exists a unique
numbering § = (y1,...,Yn) of y such that:

i) foralli=1,...,n, x; and y; are the unique points respectively of x and y
such that dg(x;,y;) < 6, and so

de,(c)(x,y) = max dg (i yi).

i) If xe = (xj,,...,%;) then also yo = (yi,,...,Vi) where k = n.(x) =
ne(y) and the two numberings respect the same order along e.
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iii) If x; is a vertex v, then y; is the first point of y along the edge e which
minimizes ., among all the edges having v as an endpoint.

Proof. We assume that J satisfies the following inequalities:

1 . C
o< 5 min {dG(xi,x]-), for all i # ]}, (3.2.4)
1 .
o< 5 min {dc(xi,v), X; #0,0€ V} (3.2.5)
and
1 . /1
o< 4maxeep (1.(x) +2) erh (E + te’v) (3:2:6)

By (3.2.4) we have that for each point x; of £ there exists a unique point of
y which we denote by the same index y; such that dg(x;,y;) < 5. We put
7 = (y1,-..,Yn). Then, by definition of the metric de,(G), it follows that
de,(c) (%, ¥) = maxj=1,..» dc(x;,y;). So condition i) is satisfied.

By (3.2.5) we have that n.(x) = n.(y) indeed if x; is the point of x, of
minimum distance from v, then y;, is contained on the same edge e of x;.
Then, using again (3.2.4), we guarantee that the renumberings of x, and
Ye respect the same order along e. Hence condition ii) is satisfied.

Finally, condition iii) is satisfied, indeed if x; = v then (3.2.6) guarantees

that there is a single point of y minimizing ., and moreover, by (3.2.4),
it has the same index i of x;. O

Proposition 3.2.2. ® is a continuous mapping.

Proof. First remind that function ® is defined in such a way that for each
configuration x € C,(G) then ®(x)y = xy and there is a bijection between
x. and ®(x), such that the order of numbering along e is preserved.
Consider the covering projection 77: C,(G) — C,(G) which sends a con-
figuration % in C,(G) to a configuration x € C,,(G). Then, we can construct
a function ®: C(G) — C(G) such that ®(%) = ®(x) where ®(%) inherites
the order of numbering along each edge e € E by the configuration . In
particular, 1o ® = ®o 7.

Notice that in order to prove continuity of ®, it is sufficient to prove the
lisa

continuity of ®, indeed @ is locally given by o ® o 4 ! where 4
local inverse of 7t defined on a well covered open set.
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Moreover, since C(G) € U, [1, G, it is sufficient to verify the continuity
at each configuration ¥ € C,(G) of each single component ®; of ®.

Since the function p is continuous, as we said above, it is enough to con-
sider the cases when ®(%); is a vertex w € V or ®(%); is the first or the
last point of ®(x) along an edge e. In the latter case, we verify just when
®(%); is the last point ®(x).z of (%) along an edge e, indeed the proof
is independent on the choice of the parametrization.

Given a configuration ¥ € C,(G), let § be a configuration in C,(G), satis-
tying the conditions described in Prop. 3.2.1.

Case A If O(%); is a vertex w € V then, ¥; = w and there are the follow-
ing possibilities for ;.

1) §; = w, then also ®(§); = w. Hence, limy .5 O (7); = D(%);.

2) 7; is the last point y, . of y for some edge e between the vertices v
and w, such that 6, < J, ,, for all the edges ¢’ # e which have w as
an endpoint.

Ifv € x, then v = ¥; for some j and we have the following possibilitis
for ;.

2.1) §j is the vertex v or the first point y,», for some edge " such
that J,7, < 0,0. In this case, notice that n.(y) = n.(x) +1,
Tew(X) = tew(X) = Ten(y) = 1 while 7., (y) goes to zero as i
tends to %. Then,

_ Feqw (V) )

2.2) ¥; is the first point y, along e, then 1, (y) = 1.(x) +2, ren(x) =
Tew(x) = 1 while 7., (y) and 7.4, (y) go both to zero as i tends
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to ¥. Hence,

If v & x, then let j be such that ¥; is the first point x,, of x along e and
then, §; is the first point y,, of y along e. Then, ne(y) = ne(x) +1,
Tew(x) = 1 while 7., (y) goes to zero as j tends to X. Then,

im &(7); = Lim S(y)ew

y—x

Ly

1 Tew(Y) )

— ].im ag/'()/w <_ -
Yy 2

_ «xw<%> ~ &%),

Case B If ®(%); is the last point ®(x),, of ®(x) along an edge e between
the vertices v and w then, £; is the last point x, 4 of x along e and we need
to discuss the cases below.

1) If w € x, then w = ®(X); for some j # i and we have three possible
cases for 7; as follows.

1.1) If §; = w, then 7; is the last point y, ,, of y along e.

If v € x, then v = %} for some k and in this case we have the
following possibilities for .

1.1.1) Ji is the vertex v or the first point y, , for some edge ¢’
such that é, , < J,. In this case, notice that n.(y) = n.(x),
Tew(X) = tew(x) = 1 and also 7eu(y) = tew(y) = 1. We
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1.2)

37
have,
lim &(7); = im (y)esw
- %Er}gaev“’(%  Ten(y) + r:;?’y(;/l ne(y) — 1>

1.1.2) Ji is the first point y., along the edge e. Notice that
tew(X) = Tew(x) = 1 and rew(y) = 1, n.(y) = ne(x) + 1.

So, we get
113}?513(9)1 = ;13}( D(y)e,w
1 r
- 513}6 ‘xe'vw(i  Tenly) + rezzzuy(jyl ne(y) — 1)
= %1_)11}? Qe w(% - Ve,v(y) :_ ne(y)> - ae,v,w(% a %y)>

= txe,v,w(% — ﬂe(XlT> = ®(%);.

If v € x, then let k be such that ¥ is the first point x,, of
x along e and then, 7 is the first point y., of y along e and
ne(y) = ne(x).

Notice that 7¢(x) = rew(y) = 1 and then,

s 1 _ Tew(Y)

= %1_}1’1’)12 Dée,z;,w(z T’ev(y) + Tew y) + ne(y) — 1)

a %gr}z%’vw(i B Teo(y) + ne(y)> B “evw(z Teo(x) + ne(x)>
= ®(%);

Assume §; is the last point ye,, of y along e such that ., (y) <
e (y) for all the edges ¢’ having w as an endpoint.

If v € x, then v = X} for some k and in this case we have the
following possibilities for .
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1.2.1) J is the vertex v or the first point y, , for some edge ¢’ such
that J, , < d¢,. In this case, notice that n.(y) = n.(x) +1,
Teow(X) = rew(x) =1 and also 7.,(y) = 1. Then,

%1_1’}1’31?(1)(}7)1 =
. ne(y) —2 1 Teo(Yy)
%1m “e,v,w((l o ne(]]j) — 1) < B 5 + re,v(y) + re,w(y;)y—i_ né’(y) - 1>

ne(y) —2 /1 Tew(Y)
- ”E(i) —1 <§ - rew(y) + ”e,w(y)y‘f’ ne(y) — 1>>

1 1 1 1n.(y) —2

wenn (=1 (- 2+ ) * 2 1)

. ((ne(y) —2)(ne(y) — 1))
“EN 2 (y) (ne(y) —

1.2.2) i is the first point y,, along the edge e. Notice that
Tew(X) = rew(x) = 1 while re,(x) and 7., (y) go both to
zero as i/ tends to ¥. Moreover, 1,(y) = n.(x) + 2. Hence,

%ijf}zq’(ﬂ)i =

. ne(y) —2 1 Teo(y)

513)1( ae’”’“’((l B W) < 2t Teo(Y) + Tew(y) + 1ne(y) — 1)
”6(y)_2<1_ Few(y) ))
ne(y) —1\2  7ep(y) + rew(y) +me(y) — 1

B 1 ne(y) — 2

= eon (= 3Gy 1) * 2mly) 1))

ne(y)

( )
— ae'v'w<W)_—31)> — ag/yﬂ(M) = d(%):.

2(ne(x) +1)

If v € x, let k be such that ¥ is the first point x,, of x along

e and then, 7 is the first point y,, of y along e and n.(y) =
ne(x) + 1. Notice that 7.4 (x) = 1 and 7.4 (y) goes to zero as i
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tends to ¥. Hence,

%i_{f}z&)(?)i =
. e(y) —2 1 eo ()
%lir}zae,v,w((l B Ze(i) - 1> ( 2 - ren(y) + ”e,:v(y)y"“ ne(y) — 1>
+ ne(y) —2 (1 . re,w(y) ))

ne(y) —1\2  1ep(y) +rew(y) +nme(y) — 1

1 1 Teo(X) ne(x) —1
- “e’v’w<m ( 2 reo(x) + ne(x)) + 21, (x) )
Me(x) + re(x) — 2>

2(rep(x) + ne(x)

= Kep,w <

Tew(X) > 4

1
e —_ — e (I) X):.
e <2 Teo(X) + Tew(x) +10(x) — 1 (%)

1.3) Consider the case when 7; is the last point y,/ ,, of y along an
edge ¢’ which has w as an endpoint and such that . ,,(y) <
Sew(y)- Then, §; = Yew, ¥i = Ye w-

If v € x, then v = X} for some k and in this case we have the
following possibilities for fy.

1.3.1) Ji is the vertex v or the first point y, , for some edge ¢
such that d,/ , < &, . In this case, notice that n,(y) = n.(x),
teo(X) = rew(x) =1 and also 7.,(y) = rew(y) = 1. Hence,

( _ Teaw(Y) )
g% N2 Tep(y) + rew(y) +me(y) — 1

~seon(3 = 1) = on (3~ )

(%)

1.3.2) i is the first point y., along the edge e. Notice that
Teo(X) = rew(x) =1 and 7.4 (y) = 1, while 7,,(x) goes to
zero as Jj tends to X. Moreover, 1.(y) = n.(x) + 1. Hence,
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Sx
. 1 Tew(Y)
—1 -
]JI—I%%'MJ(z Teo(y )+reW(y)+”6( ) — >
. 1

:aw(%_%y)) aevw<2 ﬁ) B(%);.

If v ¢ x, then let k be such that % is the first point x,, of x
along e and then, ¥ is the first point y., of y along e. Notice

that n,(y) = ne(x), rew(x) = rew(y) = 1 and 7.,(y) goes to
tew(X) as 7 tends to %. Then,

o 1 B T’e,w(y)
=i tonn (5 reo () + Tew(y) + 1e(y) — 1)
1 1
= l e,0,w\ ~
ylir}z(x’ ’ <2 rev(]/)+ne(y))

2) ifw & x, then alsow ¢ y.

If v € x, then v = ¥; for some j and in this case we have the following
possibilities for ;.

2.1) §; is the vertex v or the first point y,/, for some edge e’ such
that d, , < 0. Notice that 1.(y) = ne(x), rep(x) = rep(y) =1
and 7,4 (y) goes to 1.4 (x) as § tends to X. Then,

1 Tew(Y)
=1 eo,w\ ~ — -
fim e (5~ 5 F rom(y) £ 1)
T 1 Few (V)
_}%IEJI?%MJ(z T’e,w(y)‘i“”E(y))

- “eﬂ"w(% B re,w(r;')wixie(xﬂ = @)
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2.2) 7; is the first point y,, along the edge e, then n.(y) = n.(x) +1,
Tew(x) =1 while r.,(y) goes to zero as jj tends to %. Then,

%13}2 ()i = yg}c D(Y)e,w
. 1 rew(]/)
=1 e0,w\ 5 ’
ggr}?a <2 re,v(]/) + YE,W(y) + Tle(]/) - 1>

1 Few(X)
- ““"w(i  rew(X) + ne(y) — 1)

— feow (% B re,w(r;’)w—(er)ze(x)> = ()

If v ¢ x, then let j be such that ¥; is the first point x,, of x along
e and then, 7; is the first point y., of y along e and n.(y) = n.(x).
Hence,

il_f{}c&)(.’?)z = %i_rg@(y)g,w
<1 B Tew(Y) )
2 Tep(y) Frew(y) +ne(y) —1

B 1 Tew(X) -
— ae,v,w(i - re,z;(X) T Tg,w(X) T Tle(X) — 1) = (D(X)i.

= lim a0
y—>x

a

Proposition 3.2.3. Let G be a connected graph and ® defined on C,(G), then

Proof. (C) Lety € Cn(G) be a configuration in Im®. Then, y € N, (G)
since all the conditions of Prop. 3.1.4 are satisfied by the definition of
function .

(D) Let y € Ny (G), then, for each edge e € E, —% <t <teyand tpq <
tno(x) < 1. Notice that the values of ®(x),, and ®(x), can be computed
for each edge ¢ of G, so by continuity of function ® we can always choose
another configuration x € C,(G) such that xy = yy, n.(x) = n.(y), y1 =
D (x)e,p and vy, (y) = P(x)ew for each e € E. Hence, ®(x) = y,s0y € Im .
O

Proposition 3.2.4. ® gives a weak deformation of C,,(G) into Ny, (G).



42 Chapter 3

Proof. Remind that any configuration x can be written as x = xy L.cg X,
so we rewrite ®(x) = P(x)y Ueeg P(X)e.

Let us define a homotopy h; : C,(G) — C,(G) such that
he(x) = (1 —t)x + tP(x) (3.2.7)
for all t € [0, 1], in the sense we are going to explain.

First, ®(x)y = xy and hence I (x)y = xy for all t € [0,1].
Assume n,(x) = k, then also n,(®(x)) = k and consider

xe = {xl = DCE,U,ZU(T‘]_)/ .. '/xk = aelvlw(rk)}
with = <71 <--- <r < 3 and
q)(x)e = {]/1 = “e,v,w(sl)/ e Y = ‘Xe,v,w(sk)}

with — <s1 < -+ <s < 1.
Let us set

zi(t) = (1 — £)x; + ty; = @epw((1 —t)r; + ts;)

foralli=1,...,kand for all t € [0,1].
Then,

he(x)e = (1 —£)(xe) + H(D(x)e) = {z1(t), ..., z(t) }
forall t € [0,1].

Observe that
ho(x)e = {zi(0)}, = x

and also

hi(x)e = {zi(1)}, = D(x)e.
So far we have verified that hy = ide, () and hy(x) € Im® for all x €
Cn(G). Now we also verify that 11;(x) € Im® for all x € Im ® and for all
t € [0,1].
Let us consider a configuration ¥’ € Im® and let x € C,(G) be such that
x' = ®(x).
Again assume n,(x) = k.
We consider
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and we set
Xe = {xl = “e,v,w(rl)/ e X = (Xe,v,w(rk)}

such thatr; < --- <7y,
xXp = {x] = tep,w(S1), ., Xf = Xeow(Sk) }
such that —% <sp < - <sk<%and
D(x")e = {DP(x)1 = tepw(in), ..., P )k = tevw(iix)}
such that —% <up < ..oou < %
Observe that h;(x")y = x{, for all t € [0,1] since (x)y = x7,.
Then,

ht(x/)e,v = ‘Xe,v,w((l — t)?’l + tul)
ht(x,)&w = “e,v,w((l - t)rk + tuk)

for all t € [0,1]. Hence, the coordinate of h;(x'). is contained in the in-
terval (—%, 7. »] and the coordinate of ht(x')eq in [Few, %) Indeed, both r;
and 1 are contained in these intervals since x’ and ®(x’) are contained
in Im ®. Thus, a convex combination of their coordinates is still contained
in it.

Moreover, the coordinate of h;(x')., coincides with 7, if there is some
ht(x")er , such that 6y, < Jer for some edge ¢’ # e. Indeed, condition
ii) in Def. 3.1.4 holds for r; and u; since x’ and ®(x’) are contained in
Im ® and again a convex combination of their coordinates still satisfy the
condition.

Analogous reasonings are valid with respect to the vertex w.

Then, notice that the intermediate points x5, ...,x; , are uniformly dis-
tributed between xi and x,’c, so we can write their coordinates as

1-— : S1+ ‘ S
k—1) ' T k=1*
fori=1,...,k—2.

Analogously, the intermediate points ®(x'),, ..., ®(x")x_1 are uniformly
distributed between ®(x'); and ®(x');, thus we can write their coordi-

nates as , )
1- ! up + L
k—1) ' T k—1"
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fori=1,...,k—2.

Then, the intermediate points h(x'); = (1 — t)x] + t®(x'); for i =
1,---,k — 2 are uniformly distributed since we can rewrite their coor-
dinates as follows:

oo () ) (e )

_ (1 _ kil) (L= 51+ ) + 2 (1= s+ 1)

forall t € [0,1].

Hence, Im® is a weak deformation of C,(G) and so N,(G) is a weak
deformation of C,(G) since Im® = N,(G). O

Given a connected graph G, consider the subset
Vi ={v e V|deg(v) <1}.

We denote by C;,(G) the subset of C,(G) consisting of the configurations
of C,(G) which satisfy for each vertex v € V; and each edge e € E with
vEe,

Xe = {xl - ‘Xe,v,w(tl)z s /xne(x) - “e,v,w(tn(,(x))}

with {e,v <tH < - < tng(x) < %
Proposition 3.2.5. ®(C},(G)) is a weak deformation of C},(G).

Proof. The proof is analogous to that of Prop. 3.2.4 except for the edges
containing a terminal vertex. Let x € C,(G) and consider an edge e
containing v € Vj. Then,

Xe = {xl = “e,v,w(tl)/ s Xy (x) T “e,v,w(tne(x))}

with e, <t; <0 <ty < % Then it is sufficient to observe that also
the image

d(x), = {yl = “e,v,w(”l)/- oY= “e,v,w(une(x))}

with Zep < up < -+ <y (y) < 1 is contained in C;,(G). Thus, the
proposition follows again using the same reasoning of Prop. 3.2.4. O
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3.3 The cubical complex Q,(G)

Proposition 3.3.1. Given a connected graph G, we can associate to the normal-
ized configuration space Ny (G) a cubical complex structure which we denote by
Q1 (G). In particular, dim Q,(G) < min{n, |V|}.

Proof. In order to construct Q,,(G) we describe its cells.

The 0-cells of Q,(G) are the configurations in C,(G) satisfying the condi-
tions below.

For each edge e whose vertices are v and w, consider the parametrization
Qe pw Of € from v to w and x, = {xX1 = @epw(r1), ..., Xk = Xev,w(rk)} such
that —% <r<--<n< % assuming #1,(x) = k. Then,

i) 11 = 7.p where 7., is defined as ¢, in (3.1.2);
i) 7 = Feq Where 7, is defined as f, 4 in (3.1.2);

iii) the intermediate points are uniformly distributed along e between
x1 and xg.

Notice that any configuration x satisfying the conditions above can be
uniquely determined by v(x), hence, we can identify each 0-cell with the

couple ((ny(x))ev, (Me(x))eck) such that Y, ny + Y, 1. = n.

Let x = (ny(x),n.(x)) and ' = (ny(x’), n.(x")) be two 0-cells of Q,(G)
which, for an edge ¢y and a vertex wp such that wy € ey, satisfy the
following conditions:

(') ny(x)+1 if v =mwy
ny(x') =
¢ 1y (x) otherwise

no(x) = {ne(x) —1 ife=e¢p

ne(x) otherwise.

Then a 1-cell s of Q,(G) is an oriented edge from x to x'.

Let vp and wy be the vertices of ey and ey opwy: [—5,2] — €o be the

parametrization of ey such that ey v,w,(—3) = Vo and &eyopw,(3) = Wo.
Assume 1,,(x) = k and hence n,,(x") = k — 1.
Consider

xeo - {xl - “60,”()0,&]0(71)/ e X = “eo,Uo,wO(rk)}
and
xéo = {xi = anIUOIWO(ri)’ cecy xI/(—l = a@o,Uo,Wo (rll(—l)}'
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We set

x]/( = aEOlUOIWO (r],() = ler/UO/wO(E) = wO'

Consider the injective parametrization Bs: [0,1] — C,(G) such that
Bs(0) = x, and Bs(1) = " defined by

,Bs(t)i = ey, 09,10 ((1 - t) ri + ti’;)
fori=1,...,k.

Remark 3.3.2. If ¢y is not a loop, there is only one possibility to choose
the parametrization a;y,,w, in order have ny,(x) = 0 and ny,(x') = 1.
Hence, there is exactly one 1-cell from x to x’.

If ep is a loop with a single vertex wp, then there are two opposite
parametrizations of ¢y and hence two different points on ey can be moved
towards the vertex wy. Hence, we have two distinct 1-cells of Q,(G) from
x to x'.

A 2-cell a of the cubical complex Q,(G) is a square attached to four
O-cells x = (1ma(x),1e(x), y = (oY), me(y)), ¥ = (moly),me(y')), = =
(110(2),n.(z)) and four 1-cells s1,5], 52,55 of Q,(G) which satisfy the fol-
lowing conditions.

Let us consider two distinct edges ep, e, € E and two distinct vertices
wo, w'O € V. Then, the four O-cells must satisfy:

() ny(x)+1 ifv=mwy
n =
oY 1y (%) otherwise,
) ne(x) =1 ife=ep
ne(y) = {ne(x) otherwise,
and
no(y)) = ny(x) +1 if v = wy
1y (x) otherwise,
nely') = ne(x)—1 ife=ej
e (x) otherwise,
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(2) no(x) +1 if v = wp, wy
ny(z) =
? 1y (x) otherwise,

) ne(x) —1 ife=ep,e
ne(z) =
‘ 1e(x) otherwise.

The four 1-cells are the oriented edges s; from x to y, s} from x to v/, s,
from y to z and s} from y’ to z.

Take two parametrizations aeyv,w, and a, . ., respectively of the

ef, 00w
/ : / /
edges ¢g and ¢; and consider xo, = {x1,..., %} and xy = {x},..., xp }.

For the edges s, s’l, s2, 55 we consider the parametrizations
Bsi : t1 = Cu(G) and By : t — Cu(G)
depending on the parameter ¢; and
Bs, :t2 = Cu(G) and By : fr = Cu(G)

depending on the parameter ¢, as defined before. Notice that the points
of x¢, moves indipendently from those of X, since eg # ¢(. Then, we define

Ba: [0,1]*> — Cu(G) sending t = (t1,t;) € [0,1]? to the unique configura-
tion B,(t) such that
Ba(t) Ny = Bs, (1) Neo = By, (t1) N &g
Ba(t) N&y = By (t2) N &y = Bs,(t2) N &g
Ba(t)N(G—epUey) =xN(G—2eyUe)).

It is also possible to define B, explicitely using the following notation
which include directly the dependence on the parameters:

Ba(ty, tr) = x1f2,
10 __

In this way we denote the 0O-cells by x0 = x, x10 = Y, K01 = y' and
x11 = z. Then, we can write

X = (1= 1) (1= 1) + (1 — £2) a0 + (1 — 1) b2 + 122} (3.3.8)

1

fori=1,...,1g(x).
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z
Figure 3.3.4: A 2-cell of Q,(G).

So far we have assumed ey # e)), now consider ¢y = ¢, and see how the
construction above must be modified.

Let ep € E have the vertices vy and wy as endpoints. Then wj, = vy since
wo # w). Hence the conditions on the O-cells x,y,y’" are the same while
the conditions on z must be rewritten as follows:

(2) ne(x)+1 if v = wp, wy
ny(z) =
¢ 1y (x) otherwise

ne(x)—2 ife=eg
1e(x) otherwise.

In this case, the points of x on ¢y move depending on both parameters
t1 and t, at the same time and we can use the same formula (3.3.8) to
define x/12,

It is possible to generalize this reasoning to construct an m-cell ¢ of Q,(G).
In this case we denote with x''m the 0-cells of Q,(G) with iy,...,i, =
0,1 depending on the value of parameters ty, ..., t;.

Then, as before if all the edges e, ..., e, are distinct, then the points on
each edge e; of configuration x'-+/m depend only on one parameter #; at
a time, while if there are some coincident edges, we need a combination
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of pairs of parameters as seen in the case of the 2-cells.

By the parametrizations defined above, we have constructed the cubical
complex Q,(G) directly inside the configuration space C,(G) in such a
way that coincides with NV, (G).

Notice that an m-cell of Q,(G) indicates that there are m points on the
interiors of some edges of G which are moving towards m vertices of G.
Hence, m cannot exceed the number of points n on G or the number of
vertices |V| of G. O

Proposition 3.3.3. Given the cubical complex Q,(G), a presentation for the
fundamental group of the 2-skeleton 711(Q2(G)) is a presentation for the the
n-braid group B, (G).

Proof. First we prove that B,(G) is isomorphic to m1(Q,(G)). By
Prop. 3.3.1, Q,(G) coincides with N, (G) and by Prop. 3.2.4, N,(G) is
a weak deformation of C,(G), hence,

By (G) = m1(Ca(G)) = m(Na(G)) = m1(Qn(G)).

Then, in order to get a presentation for the braid group B,(G) we can
compute a presentation for the fundamental group 71(Q,(G)) and by
Prop. 1.3.5 and Prop. 1.4.5 we can consider just the 2-skeleton of Q,(G).

a

Definition 3.3.4. Let Q),(G) be the subcomplex of Q,(G) obtained elimi-
nating all the 0-cells of Q,(G) of the form x = (1,(x),1¢(x))vev ecE sSuch
that there is at least one terminal vertex vy € V; with ny,(x) = 1 and

eliminating all the m-cells containing those 0-cells, for m > 1. In particu-
lar, dim Q,(G) < min(n, £) where £ = |V — V.

Notice that the dimension of Q),(G) is bounded in an analogous way
with respect to Q,(G).

Proposition 3.3.5. Given the cubical subcomplex Q),(G), a presentation for the
fundamental group of the 2-skeleton of Q),(G) is a presentation for the n-braid

group B, (G).

Proof. The definition given for the cubical subcomplex Q) (G) is equiv-
alent to construct the cubical complex which coincides with C,,(G). By
Prop. 3.2.5, C},(G) is a weak deformation of C,(G), hence

Bu(G) = m1(Cu(G)) = m(Cy(G)) = m(Q(G)).
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Then, by Prop. 1.3.5 and Prop. 1.4.5 we are able to compute a presentation

for 11(Q),(G)) considering the 2-skeleton of Q},(G). -

Corollary 3.3.6. For any connected graph G not homeomorphic to S' and such
that G contains one single vertex vy of degree k > 2, then the braid group B, (G)
is a free group.

Proof. By hypothesis |V — V4| = 1, so dim Q,(G) < min(n,1) which
means that the subcomplex Q) (G) is a graph. Then, by Prop. 1.4.2 the
braid group B, (G) is a free group. O
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Applications and examples

In this chapter we analyze some classes of connected graphs and we
use the cubical subcomplexes Q),(G) in order to obtain presentations for
the braid groups on those graphs.

First, we discuss the family Tj of radial trees consisting of k edges and
we prove again the results in Prop. 2.3.4 and Prop. 2.3.3 already seen in
Chapter 2. Then, we find analogous results for the family L; of bouquets
of k loops.

For both these families we include some examples and some figures of
the corresponding cubical subcomplexes Q) (Ty) and Q) (L;) made using
Wolfram Mathematica. After that, we compute some presentations for the
braid groups of other examples and we compare them to already known
outcomes whenever possible. In particular we see the simplest graph T
which contradicts Ghrist’s conjecture, [Ghgg].

To do the computation, we use a Mathematica code which first calcu-
lates a presentation for the fundamental group of the cubical subcomplex
Q),(G) as proved in Prop.1.4.5, and then, when needed, it applies the
Tiezte transformations in order to simplify the presentation. The code
used either for computing the presentations and for creating the figures
can be found in detail in Appendix A.

4.1 Radial trees Tj

Let Ty be a radial connected graph consisting of k > 3 terminal vertices
v1,...,0 a vertex vg of degree k and k edges ey, ..., e, such that each ¢;
joins vp and v; fori =1,...,k.

Let us consider the cubical subcomplex Q) (G) and notice that by
Corol. 3.3.6, it is a graph since it has a single vertek of degree greater
than 2.

51
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Proposition 4.1.1. The braid group B, (Ty) is isomorphic to a free group on

(n+k—-2)!12n+k—nk—1)

1= nl(k—1)!

generators.
The pure braid group Py (Ty) is isomorphic to a free group on

(n+k—-2)!12n+k—nk—1)

1= (k—1)!

generators.

Proof. By Prop. 3.3.5, Bu(Tx) = m1(9Q;,(Tk)) and by Prop. 1.4.3 we need to
compute the Euler characteristic of Q},(Ty) to find the number of genera-
tors of the free group.

First, we observe that the vertices of Q) (Ty) are the configurations satis-
fying one of the following characteristics:

i) one point lays on vy and the other n — 1 points are distributed in the
interiors of the k edges ey, ..., e;

ii) all the n points are distributed in the interiors of the k edges
€1,...,6.

Then, we count the vertices satisfying i) as (k — 1)-combinations with
repetitions of n — 1 elements and hence they are exactly (”Jrk 2). Similarly
we count the vertices satisfying ii) as k-combinations with repetitions of

n-l—k 1)

n elements and hence they are exactly ( Hence, there are

k—2 —
(n+ ) n (n+k 1>
n—1 n
O-cells of QJ,(Ty).

The 1-cells of Q;,(Ty) are the oriented edges from a vertex of type ii) to a
vertex of type 7).

Notice that each vertex of type i) has degree equal to k, indeed the point
which occupies vy can come from any of the k edges of Tj.

In a similar way, each vertex of type ii) has degree equal to the number of
non-empty edges of Ti, indeed each non-empty edge of Ti has one point
which can occupy the vertex vy.

Then, the total number of 1-cells of Q/,(Tk) is:

(LTG0
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Finally, the Euler characteristic of Q),(Ty) is

X(QZ(Tk))Z(n+k_2) N (n+k—1) _k(n+k—2)

n—1 n
(m+k=2)1  (n+k—1)!
—Dik=1)! T alk=1)!
(n+k—-2)!12n+k—nk—1)
n!(k—1)!

—(1—k)

Hence, the braid group B, (T) is isomorphic to a free group on

1= (@ () =1 - UEEEREEEZ I (ag

generators. Then, notice that if we multiply by a factor n! the Euler char-
acteristic for QJ (Ty) , we obtain the Euler characteristic for the labeled
configuration space Q),(Ty). Hence, the number of generators for P, (Tj)
is
(n+k—2)!2n+k—nk—1)

(k—1)! O

These results agree with those already seen in Prop. 2.3.4 and in
Prop. 2.3.3.

1—x(9p(Ty) =1-

In particular, by (4.1.9), the braid group B,(T3) is isomorphic to a free

(n=1)

group on “5— generators and the braid group B,(Tj) is isomorphic to

(n—1)(2n+5)
6

n
a free product on generators.

Let us see some examples.
Consider the graph T3 and rename it Y.
For n = 1, the braid group B1(Y) = 0 since Q}(Y) is a tree isomorphic to
Y.
For n = 2, the cubical subcomplex Q}(Y) has three vertices of type i) of
degree 3 and six vertices of type ii) arranged as in Figure 4.1.7.

Observe that there is only one generator since there is only one edge
out of the chosen maximal spanning tree. Hence, the braid group B>(Y)
is isomorphic to a free group on one generator,

BzY = 7T1(D2(Y)) =7Z.

For n = 3, the cubical subcomplex Q}(Y) has six vertices of type i) and
ten vertices of type ii) as in Figure 4.1.8. As soon as we choose a spanning
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Figure 4.1.5: GraphY.

Figure 4.1.6: The subcomplex Q7 (Y).

tree of Q4(Y) we notice that there are three edges out of it and hence a
presentation for 7r1(Q5(Y)) has three generators. Thus, the braid group
B5(Y) is isomorphic to a free group on three generators,

BsY = 11 (Ds3(Y)) = Fs.

For n = 4, observe in Figure 4.1.9 the subcomplex QQ(Y). Notice that
there are six edges outside of the maximal tree. Hence, we get:

B,Y = F.
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Figure 4.1.7: The subcomplex Q}(Y') with the chosen maximal spanning tree
in black.
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Figure 4.1.8: Q5(Y) with the chosen maximal spanning tree in black.
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Figure 4.1.9: The cubical complex Q)(Y) with the maximal tree chosen in
black.
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Let us call X the graph Tj.

Figure g.1.10: Graph X.

For n = 1, the braid group B;(X) is trivial since Q},(X) is a tree
isomorphic to X.

For n = 2, let us observe in Figure 4.1.11 the subcomplex Q}(X).
Notice that there are three edges outside of the maximal tree. Hence, we

have:
7'(1(Q/2(X)) = <X1, X2, X3> that is BQ(X) = Fs.

In a similar way, if we consider Q5(X) then its fundamental group has a
presentation consisting of eleven generators. Hence, B3(X) = [Fy;.
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Figure g.1.11: The cubical subcomplex Q) (X) with the chosen maximal tree
highlighted in black.
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Figure 4.1.12: The cubical subcomplex Q%(X) with the chosen maximal span-
ning tree in black.
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4.2 Bouquets of loops Ly

Let Ly be a graph consisting of k loops and a single vertex vy of degree
2k. First notice that QJ,(Ly) = Q,(Ly) since there are no terminal vertices
in Ly and by Prop. 2.3.1, the dimension of Q, (L) is equal to 1 since there
is one single vertex of degree greater than 2, that is Q, (L) is a graph.

Proposition 4.2.1. The braid group B, (Ly) is isomorphic to a free group on

(n+k—-2)!2n+k—2nk—1)

1= n(k—1)!

generators.
The pure braid group Py (Ly) is isomorphic to a free group on

(n+k—2)!2n+k—2nk—1)

1= (k—1)!

generators.

Proof. The braid group B,(Ly) is a free group since Q,(Ly) is a graph.
Then, in order to compute the number of generators we need to find the
Euler characteristic of Q,(Ly).

We follow a reasoning similar to that used in Q,(Tj) in order to describe
and count the 0-cells and the 1-cells of Q,(Ly).

The 0-cells of 9, (L) are the configurations satisfying one of the follow-
ing characteristics:

i) one point lays on vy and the other n — 1 points are distributed in the
interiors of the k loops ey, ..., e;

ii) all the n points are distributed in the interiors of the k loops
€1,...,6.

Then, we count the vertices satisfying i) as combinations with repetitions

of n — 1 elements and hence they are exactly (";ﬁz) Similarly we count

the vertices satisfying ii) as combinations with repetitions of 1 elements
n+k—1
n

<n+k—2) N <n+k—1).
n—1 n

Notice that this number coincide with that of QJ,(Tj).

and hence they are exactly (
of Q,(Ly) is

). So, we have that the number of 0-cells
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The 1-cells of Q, (L) are the oriented edges from a vertex of type ii) to a
vertex of type i). Remind that for each 0-cell having points on a loop there
are two distinct 1-cells, hence the number of 1-cells of Q,(Ly) is twice the
number of 1-cells of Q) (Ty).

Finally, the number of generators is equal to

1 x(Qu(Ly)) =1 - ((":f]z) + (Hs_ 1) —2"(”:5}2))

(n+k—-2)!2n+k—2nk—1)

=1- nl(k—1)!

To get the number of generators for P, (Ly) it is sufficient to compute
X(Qn(Ly)) by multiplying x(Qn,(Lk)) by a factor n!. O
In particular, the braid group B, (L) is isomorphic to a free product

on 2n generators, B,(L3) is isomorphic to a free product on n(2n + 1)

. . . 3 2
generators and B,(Ly) is isomorphic to a free product on 2~ +gn +n
generators.

Let us see some examples.

The graph L, consists of two loops ey and e; and a single vertex v.
For n = 1, we have three 0-cells and four 1-cells as in Figure 4.2.13. Then,
7T1(Q1(L2)) = <X1, xz) and so Bl(Lz) = IFz.

For n = 2, we have five 0-cells and eight 1-cells as in Figure 4.2.14. Then,

Figure 4.2.13: Q1(L;)

observe that a presentation for 7r1(Q>(L,)) has four generators. Hence,
By(Ly) = Fy.

The graph L3 consists of 3 loops and a single vertex vg.
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Figure 4.2.14: Qy(Lo)

Figure 4.2.15: Q1(L3)
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For n = 1, we have four 0-cells and six 1-cells arranged as in Figure 4.2.15.
Hence, a presentation for 711(Q1(L3)) consists of 3 generators, that is
B1(L3) = Fs.

For n = 2, we have a presentation for 711(Q>(L3)) with 10 generators.
Hence, Bz(L3) = ]Flo.

For n = 3, we have a presentation for 711(Q3(L3)) with 21 generators.
Hence, B3(L3) = Fyy.

Figure 4.2.16: Q)(L3)

The graph L, is formed by four loops and a single vertex.

For n = 1, we have a presentation for 711(Q1(Ls)) with 4 generators.
Hence, By (Ly) = IFy.
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POy =

Figure 4.2.18: Q1(Ly)
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For n = 2, we have a presentation for 711(Qx(L4)) with 19 generators.
Hence, By(Ls) = Fg.

Figure 4.2.19: Q)(Ly)
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4.3 Graphs Gg

Let Gy, with k,h > 1 be a graph consisting of k terminal vertices
v1,...,0k, a single vertex vy of degree 2h + k, k edges such that each e;
joins vy and v; and & loops attached on vy.

By Corol. 3.3.6, the dimension of Q;,(Gy ) is equal to 1 since there is one
single vertex of degree greater than 2.

Proposition 4.3.1. The braid group B, (Gy,) is isomorphic to a free group on

Lfn+h+iifﬁgi5h+k—1)+%“%+kw?+5ff—2>+
Etea(3)()( )

generators.
The pure braid group Py (Gy ) is isomorphic to a free group on
(m+h+k—-2)!2n+h+k— 1)

0+ k=T [ ”(ﬂ+sz_2)+

Lo ()0 )

1—

generators.

Proof. The braid group B, (Gy ) is a free group since Q;,(Gy ) is a graph.
Then, in order to compute the number of generators we need to find the
Euler characteristic of Q,(Gy ).

We follow a reasoning similar to that used in the previous two sections in
order to describe and count the 0-cells and the 1-cells of Q;,(Gy ).

The 0-cells of Q;,(Gy ) are the configurations satisfying one of the follow-
ing characteristics:

i) one point lays on vp and the other n — 1 points are distributed in the
interiors of the k 4 h edges of Gy ;

ii) all the n points are distributed in the interiors of the k 4 h edges of
Gk,h-

Then, we count the vertices satisfying i) as (k 4+ h — 1)-combinations with
repetitions of n — 1 elements and hence they are exactly ("+h+k 2). Notice
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that these 0-cells must have degree 2k + k. Similarly we count the vertices
satisfying ii) as (k + h)-combinations with repetitions of n elements and
hence they are exactly (n+h:k71)_ In this case, the degree of each 0-cell
varies depending on the number of non-empty edges of Gy ;. We have
that the total number of 0-cells of Q;,(Gy,) is

<n—|—h—|—k—2) (n—i—h—l—k—l)
+ )
n—1 n

The 1-cells of Q;,(Gy,) are the oriented edges from a vertex of type ii) to
a vertex of type 1).
The number of 1-cells of Q;,(Gy ) is

s(nen (M 2>+ >y @) (S

=0h'=

Then, the number of generators for B,(Gy ) is equal to 1 — x(Q,(Gyp))
and the number of generators for P, (Gy ) is equal to 1 — n!x(Qn(Gkp)).
O

In particular if 1 = 0 or k = 0 we obtain again the formulas already seen
in the cases of Ty and Ly respectively.

If h = k = 1, we have that B,(G11) = F,, if k = 2 and h = 1 we get
B.(Ga1) = F,2

Now we see some examples.
The graph Gj; consists of two edges one of which is a loop as in Fig-
ure 4.3.20.

For n = 1, we construct the subcomplex Q7(Gj,1) and, as soon as we
choose a maximal tree, we observe from Figure 4.3.21 that there is a sin-
gle edge out of it. Hence, 11 (Q}(G11)) = Fy.

For n = 2, we get two edges not contained in the maximal tree chosen,
hence 711 (Q5(G11)) = Fo.

For n = 3, we get three edges not contained in the maximal tree chosen
and so this agrees with Prop. 4.4.1
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01

Figure 4.3.20: Graph Gy ;.

Figure 4.3.22: 95(Gy1)

X X
g 9 - 9 43 6 41 6

Figure 4.3.23: Q4(G11)
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Consider the graph G;; in Figure 4.3.24. Then, By(Gy1) = Fy,
B3(Gy1) = g as we see in the following figures representing the sub-
complexes Q5(Gy1) and Q%(Gy1) respectively.

Figure 4.3.24: Graph Gy ;.
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Let us consider the graph G5, then we get the following results for
the braid group B, (Gzp) :

1. By(

2. By(

3. B3(Gap2
(

01 Uz

Figure 4.3.27: Graph Gop.
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\fe P

Figure 4.3.28: Q/(Gyp)
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Figure 4.3.29: Q}(Gyp)
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4.4 Balloons By

We call balloons the graphs described in this section and we denote them
by By where k is the number of loops contained in each graph. This
collection of graphs is already discussed in [FSog] where it is given the
following result.

Proposition 4.4.1. [FSo9] The braid group Bz(By) has 3k + 3(]5) + 2('3‘) gener-
ators and k> —k + (k+1) (’2() relations, all of which are commutators.

Notice that B is the graph G;; already seen in the previous section.
Let B, be the graph in Figure 4.4.30.
For n = 2, we get the following presentation:

Figure 4.4.30: Graph Bs.

1

1 (Q1(B)) = <x1/---,x5\x§1x;1x3x5_1x5 X4X3X5).

Notice that after applying the substitution x4 — x3x4x5 ! the relation be-

comes x4_1x5_ x4x5 which is a commutator of generators x4 and x5. Hence,

after renumbering the generators we have

m1(Q5(B2)) = (x1,. .., Xa|[x3, x4])

which is a right-angled Artin group and in particular it is isomorphic to
IF5 * Z2. This result agrees with the corresponding one in [FSog].

For n = 3, we get a presentation for B3(B;) with 9 generators and 6
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Figure 4.4.31: Graph Bs.

relations. By Prop. 4.4.1, we should have 9 generators and 5 relations and
indeed after a substitution we observe that two of the found relations are
equivalent.

Let us consider the graph Bs in Figure 4.4.31.
For n = 2, we get the following presentation:

1 1..-1

m1(Q3(B3)) = (x1,..-, %9 | x4_1x7_ Xy X7X4Xg,
xglx;1x5x;1 1

X4Xg

—1 —1,— —1,-1
X5 X7X5X9, X, Xg XeXg Xg X8X6X9).

By applying the substitutions x; — x4x7x4_1, X9 — Xg lxgxs and
Xg — XeXgXg 1 then the relations become commutators of generators:
X7XgX7 1x§ L X7X9Xr 1x; 1 and XgX9Xg 1x; 1 Then, after renumbering the
generators we get

By(B3) = (x1,...,Xe|[x4, x5], [x5, 6], [x4, X6])-

Hence, B,(Bs) is a right-angled Artin group and it is isomorphic to [Fg *
z3.
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4.5 Graphs Oy

Let O be the graph consisting of two vertices and k edges such that each
edge joins the two vertices.

For k = 1, ®; consists of a single edge and its endpoints, hence Q,(®)
is contractible since dim Q/,(®;) = 0.

For k = 2, the graph ©; is the graph in Figure 4.5.32 and we observe that
the results agree with those already seen for L;.

Figure 4.5.32: Graph ©,.

Figure 4.5.33: The subcomplex Q}(©,).

For k = 3, we have that @3 is homeomorphic to the capital greek letter
©. Then, we get B2(03) = B3(03) = Fa.

Let us consider the graph ©4.
We get Bl(@4) =~ F;3 and 82(@4) = IFe.
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4.6 Chains Ci

Let Cyx with k > 3 indicate the graph consisting of k vertices and 2(k — 1)
edges such that each pair of vertices is joined by two edges as a chain.
Let C3 be the graph in Figure 4.6.36.

Notice that the results for C3 coincide to those for L. Let C4 be the graph

e e e

Figure 4.6.36: Graph Cs.

in Figure 4.6.37.

For n = 1, we can see from Figure 4.6.38 that there are three generators
for the braid group B;(Cy).

For n = 2, we get the following presentation

Ba(Cy) = (x1,..., x7|x] "xexs tag Ty xgxzxg ).

Then, applying the substitution x7 — x, x7x6 and renumbering the gen-
erators we have:

B>(Cs) = (x1, ..., x6|[x1, x6])
which is a right-angled Artin group and hence, B,(Cy) = Fy * Z2.

Figure 4.6.37: Graph Cy.
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Figure 4.6.38: The subcomplex Q(Cy).

4.7 The smallest non linear tree T

Let T be the smallest non linear tree as in Figure 4.7.39.
For n = 1, the subcomplex Q/(T) is a tree and hence the braid group

Figure 4.7.39: Graph T.

B1(T) is trivial.
For n = 2, the presentation can be reduced to the form:

m(Qa(T)) = (x1,x2, %3, X4)
and so B,(T) is isomorphic to Fy.

For n = 3, we get B3(T) = [Fy,. These results agree with 2.3.11, indeed
the braid group is a right-angled Artin group if n < 4. Now we are going
to verify that for n = 4 we cannot get a right-angled Artin group.
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For n = 4, we get a presentation consisting of 24 generators, 4 commu-
tators of generators and two other relations. We observe that there are
16 generators not involved in the relations, hence the braid group B4(T)
is isomorphic to IFi¢ * A where A is given by the relations. After having
eliminated the free generators, we get the following reduced presentation:

(x1, ..., xg| [x2, %6), [x4, %7], [X6, x7], [¥6, xs], X " x3%xg '25 L1 x5,

1

—1,.-1,-1 —1,-1,.-1
X] X5 Xy X5X1Xg X| X5 X7X5X1Xg).

1

After applying the substitutions x3 — x1x3 and x5 — x5x; ~ we obtain:

1..—1

~1.-1 1. —
(x1, ..., xg| [x2, xe], [x4,x7], X6, X7], [x6, X8, [x3, X8], X5 %7 X525 X5 x7X58)
but it is not possible to write all the relations as commutators of genera-
tors. Hence, B4(T) is not a right-angled Artin group.
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4.8 Other examples with non-trivial relations

We call H the graph homeomorphic to the capital letter H.

For n = 1, notice that Qj(H) is a tree isomorphic to H and hence
o s
o”/ kS

Figure 4.8.40: Graph H.

m1(Q)(H)) is trivial. For n = 2, we can observe in Figure 4.8.43 that

Figure 4.8.41: The cubical subcomplex Q| (H).

there are eleven edges out of the chosen tree and so we get 711 (Q5(H)) =
(x1,x2). Hence, By(H) = F,.

For n = 3, we get B3(H) = Fq.

For n = 4, we have:

ﬂl(Qﬁl(H)) = <X1, e, X12 x6x11x1_21x6_1x12x1_11>.



OTHER EXAMPLES WITH NON-TRIVIAL RELATIONS

Figure 4.8.42: The subcomplex Q) (H).

83
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Figure 4.8.43: The maximal tree chosen on the subcomplex Q4 (H).
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If we apply the substitution x1; — x11x32 the relation becomes a commu-
tator of generators x¢ and x1; and then By(H) = Fyg * Z2.

For n = 5, after similar substitutions and renumberings, we find that also
Bs(H) is a right-angled Artin group consisting of 20 generators and 5
commutators.

Forn =6, 86(H) = ]Flg * (]Fl X ]F4) * (]F1 X ]F5).

Let us call T the graph consisting of two vertices of degree 3 and three
edges arranged as in Figure 4.8.44. Notice that there are no terminal ver-
tices in T, hence Q,(T) = 9,,(G).

For n = 1, we can construct the cubical subcomplex Q1(I') as in Fig-

Figure 4.8.44: GraphT.

ure 4.8.45. Let us observe that when we choose a maximal spanning tree,
then there are 2 edges out of it. Hence, 711 (Q1(T') is isomorphic to Fo.

For n = 2, a presentation for 711 (Q,(T")) is
m(Q2(T) = (xq, ..., xq4|[x3, x4]).
Hence, B,(T') =2 IF; x Z2.
For n = 3, a presentation for 7r1(Q3(T")) is
B3(T') = (x1,..., x6|[x3, x6], [x4, X6], [x4, X5])

and hence B3(T) = F, * Z*.
For n = 4, the braid group B4(I') is a right-angled Artin group indeed a

Figure 4.8.45: The cubical complex Q1(T).
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Figure 4.8.46: The subcomplex Qy(T).

Chapter 4
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presentation is the following

By(T) = (x1,...,xg8|[x3, x3], [x4, x7], [x4, x8], [X5, 6], [x5, x7], [x5, xg]).

87
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APPENDIX A

Mathematica code

We see in detail the code used to create figures and to compute pre-
sentations for braid groups as seen in chapter 4.

Given a graph G we want to construct the corresponding cubical complex
9Q,(G) and the subcomplex Q;,(G).

The function ConfigVertices takes in input the graph G, the number of
points n and the type of the cubical complex chosen: nothing if we want
to consider Q,(G), "Reduced" if we want Q),(G). The outputs are all the
0-cells of Q,(G) or Q),(G) respectively.

ConfigEdges takes the graph G and the list of O-cells found and give us the
1-cells as edges between the 0-cells and then ConfigGraph combine these
two classes of cells into a unique structure.

BWDisk([c ] :=
Graphics[{Opacity[1], EdgeForm[ {AbsoluteThickness[1], Black}],
If[c ===0, White, Black], Disk[]}]

ConfigVertices[g_Graph, n_Integer, type : (Reduced | Null) : Null] :=
Module [ {tg = EdgeTaggedGraph[g], nv, ne, vd, cv},
nv = VertexCount [tg]; ne = EdgeCount[tg];
vd = VertexDegree[tg];
cv = Flatten[Table [Outer[List,
Flatten[Map [Permutations, IntegerPartitions[m, {nv}, Range[@®, m]]], 1],
Flatten[Map [Permutations, IntegerPartitions[n -m, {ne},
Range[@, n-m]]], 1], 11, {m, ©, n}], 2]}
Switch[type,
Null, Cases[cv, {c_, _} /3 Max[c] <1],
Reduced, Cases[cv, {c_, _} /; And[Max[c] <1, c.(1-Sign[vd-1]) ==0]1,
Extended, Cases[cv, {c_, _} /3 Max[c-vd] <0]]]

89



90 Appendix A

ConfigEdges[g Graph, cv_List] :=
Module[ {tg = EdgeTaggedGraph[g], 1v, le, nv, ne, ncv, 1},
lv = VertexList[tg]; le = EdgeList[tg];
nv = VertexCount [tg]; ne = EdgeCount[tg]; ncv = Length[cv];
1 = Flatten[Table[If[cv[[i, 2, j]] >0,
{{i, j, Pesition[lv, le[[j, 111, 1] [[1, 111},
{i, j, Position[lv, le[[], 211, 1]1[[1, 111}},
Nothing], {i, 1, ncv}, {j, 1, ne}], 2];
1 =Replace[l, {i_, j , R }= {1, cv[[1]] + {UnitVector[nv, k], -UnitVector[ne, j]}},
{111;
Cases[1l, {i_, j } /; MemberQ[cv, j] :» DirectedEdge[i, Position[cv, 7, 11[[1, 111111

ConfigEdges[g_Graph, n_Integer, type : (Extended | Reduced | Null) : Null] :
ConfigEdges [g, ConfigVertices[g, n, type]]

ConfigGraph[g_Graph, cv_List, ce_List] :=

Graph [Range[Length[cv]], ce, VertexWeight -» Apply[v, cv, {1}]]
ConfigGraph[g_Graph, cv_List] := ConfigGraph[g, cv, ConfigEdges[g, cv]]
ConfigGraph[g_Graph, n_Integer, type : (Extended | Reduced | Null) : Null] :

ConfigGraph[g, ConfigVertices[g, n, type]]

ConfigGraphPlot [cg_Graph, g_Graph, n_Integer, type : (Reduced | Null) : Null,
opts__ Rule] :=
ConfigGraphPlot[cg, g, ConfigVertices[g, n, type], opts]
ConfigGraphPlot[g Graph, n_Integer, type : (Reduced | Null) : Null,
opts _ Rule] :=
ConfigGraphPlot [ConfigGraph[g, n, typel, g, n, type, opts]

ConfigGraphPlot[cg Graph, g Graph, cv List, opts  Rule] :=
Module[{cw = Replace[ConfigView, Flatten[{opts, ConfigView -» True}]],

cs = Replace[ConfigSize, Flatten[{opts, ConfigSize » 50}]],
cz = Replace[ConfigZoom, Flatten[{opts, ConfigZoom > 1}]],
ps = Replace[PointSize, Flatten[{opts, PointSize - ©.025}]],
ap = Replace[ArrowPlacement, Flatten[{opts, ArrowPlacement -» 0.6}]],
as = Replace[ArrowSize, Flatten[{opts, ArrowSize - ©.025}]1],
1ls = Replace[LoopSize, Flatten[{opts, LoopSize »1}]],
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r = Max[1, Map[Norm, Replace [VertexCoordinates, AbsoluteOptions[g]]]1]},
GraphPlot[cg,
VertexLabels » If[Not[cw], All,
Thread [Rule[VertexList[cg],
Map [
Placed[Show [Graphics [ {EdgeForm[ {AbsoluteThickness[1], Black}],
White, Disk[{0, 0}, 1.25r /cz]}],
ConfigPlot[g, #, SelfLoopStyle » 1s], ImageSize - cs,
PointSize -» ps], Center] &, cv]]11],
EdgeShapeFunction -» Function[{pts, edge},
{If[Max[cv[[{edge[[1]], edge[[2]1]}, 111] > 1, Red],
Opacity[1],
Arrowheads [ {{as, ap}}], Arrow[pts]}],
Apply[Sequence, FilterRules[Flatten[{opts}], Options[GraphPlot]]]1]]

The function AnnotatedConfigGraph chooses a spanning tree on the
graph resulted by ConfigGraph and associates a numbering to the edges
which are left out of the spanning tree.

AnnotatedConfigGraph[cg Graph, t Graph] :=
Module [ {tcg = EdgeTaggedGraph[cg], tt = EdgeTaggedGraph[t], e, ne, te, k=1},
e = EdgelList[tcg]; ne = Length[e];
te = ReplaceAll [EdgelList[tt], UndirectedEdge » DirectedEdge] ;
Graph [VertexList[tcg], EdgelList[tcg],
EdgeShapeFunction - Table [If [MemberQ[te, e[[1]]],
e[[1]] » ({Black, Thick, Arrowheads[{{©.025, ©8.6}}], Arrow[BSplineCurve[#1]]} &),
e[[1]] » ({Arrowheads[{{©.625, 8.6}}], Arrow[BSplineCurve[#1]]} &)1, {i, 1, ne}],
EdgelLabels —» Table [If[MemberQ[te, e[[1]]],
e[[1]] » "", e[[1]] » Placed[Subscript[x, k++], {0.5, {6, 0}}]1], {i, 1, ne}],
VertexiWeight -» AnnotationValue[cg, VertexWeight]]]

AnnotatedConfigGraph[g_Graph, n_Integer, red : (Reduced | Null) : Null, opts___Rule] :=
AnnotatedConfigGraph [ConfigGraph[g, n, red], opts]

AnnotatedConfigGraph[cg_Graph, opts _ Rule] :=
AnnotatedConfigGraph[cg, FindSpanningTree [UndirectedGraph[cg], opts]]

Then, to compute a presentation for the braid group B,(G) we define
the function BraidGroupPresentation which takes as input the graph ob-
tained by using AnnotatedConfigGraph. The generators of the presentation
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AnnotatedConfigGraphPlot [acg_Graph? EdgeTaggedGraphQ, g Graph, cv_List, opts___Rule] :=
Module|[ {cw = Replace[ConfigView, Flatten[{opts, ConfigView -» True}]],
cs = Replace[ConfigSize, Flatten[{opts, ConfigSize »5@}]],
cz = Replace[ConfigZoom, Flatten[{opts, ConfigZoom »1}]],
ps = Replace[PointSize, Flatten[{opts, PointSize -» ©.025}]],
ap = Replace[ArrowPlacement, Flatten[{opts, ArrowPlacement - @.6}]],
as = Replace[ArrowSize, Flatten[{opts, ArrowSize » ©.01}]],
1s = Replace[LoopSize, Flatten[{opts, LoopSize -1}]],
r =Max[1, Map [Norm, Replace[VertexCoordinates, AbsoluteOptions[g]]]],
esf = Replace[EdgeShapeFunction, AbsoluteOptions[acg, EdgeShapeFunction]]},
GraphPlot [acg,
VertexLabels » If[Not[cw], All, Thread[Rule[VertexList[acg],
Map [Placed [Show [Graphics [ {EdgeForm[ {AbsoluteThickness[1], Black}], White, Disk[{@, @}, 1.25r /cz]}],
ConfigPlot[g, #, SelfLoopStyle - 1s], ImageSize - cs, PointSize - ps], Center] &, cv]]1],
EdgeshapeFunction -+ ReplaceAll[esf, Arrowheads[_] - Arrowheads[{{as, ap}}]1,
Apply [Sequence, FilterRules[Flatten[{opts}], Options[GraphPlot]]]]]

AnnotatedconfigGraphPlot [cg Graph, t Graph, g Graph, cv_List, opts___ Rule] :=
AnnotatedConfigGraphPlot [AnnotatedConfigGraph[cg, t], g, cv, opts]
AnnotatedConfigGraphPlot[g Graph, n_Integer, red: (Reduced | Null) : Null, opts___ Rule] :=
AnnotatedConfigGraphPlot [ConfigGraph[g, n, red], g, n, red, opts]
AnnotatedConfigGraphPlot [cg_Graph, g_Graph, n_Integer, red: (Reduced | Null) : Null, opts___Rule] :=
AnnotatedConfigGraphPlot[cg, g, ConfigVertices[g, n, red], opts]
AnnotatedConfigGraphPlot [cg Graph, g Graph, cv_List, opts___Rule] :=
AnnotatedConfigGraphPlot[cg, FindSpanningTree [UndirectedGraph[cg],
Apply [Sequence, FilterRules[Flatten[{opts}], Options[FindSpanningTree]]]], g, cv, opts]

obtained are the edges out of the spanning tree chosen by AnnotatedCon-
figGraph and the relations are taken considering the edges which consti-
tute the boundaries of the 2-cells of the cubical complex Q,(G) or Q},(G).

Finally, we need to simplify the presentation obtained by BraidGroup-
Presentation and hence we define the function ReducePresentation, which
applying the Tietze transformations whenever possible manages to out-
put a reduced presentation for B, (G).



BraidGroupPresentation[acg Graph ? EdgeTaggedGraphQ] :=
Module[{v = VertexList [acg], e = EdgeList[acg],

wl = AnnotationValue [acg, VertexWeight], 1, s, gen, rel},
1 = AnnotationValue[acg, EdgelLabels] /. {Placed[x_,
gen = Sort [DeleteCases [Map[Last, 1], @]];
1=Thread[{e, e /. 1}] /. DirectedEdge - List;
1 =Flatten[Table[Outer[List, Cases[l, {{_, i, _}s _}1, Cases[1l, {{i, _,
1=Replace[l, {({{i_, J_,p_}, x_ }, {{J_sk 59}, ¥y Y} {i, Js Ry P, q,
1 = GatherBy[1, #[[{1, 3}]] &];
rel = Apply [Join, Table[Replacelist([s,

]2 x, ""50};
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1 _ 1, 1], {i, v}1, 2];
{x, y}}, {1}1;

{__ L {isdlskrsp sq W) s {isJ2,k ,9.,p v} ___}/;

And[j1=1= j2, TFWl[[]1, 2]] === wl[[]2, 2]],

Max [wl[[i, 2]] -wl[[k, 2]1] =2, wl[[]jZ, 1]] =t=wl[[j2, 1]]]]

:> Join[w, -Reverse[v]]], {s, 1}11;
{gen, DeleteCases [DeleteCases[rel, @, Infinity], {}]1}]

BraidGroupPresentation[cg_Graph, t_Graph] :=
BraidGroupPresentation [AnnotatedConfigGraph[cg, t]]

BraidGroupPresentation[g_Graph, n_Integer, red: (Reduced | Null) : Null, opts___Rule] :=

BraidGroupPresentation [ConfigGraph[g, n, red], opts]
BraidGroupPresentation[cg Graph, opts  Rule] :=
BraidGroupPresentation[cg, FindSpanningTree [UndirectedGraph[cg], opts]]
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ReducelWlord[w List] :=
ReplaceRepeated [DeleteCases[w, @],
{{a___,x ,y ,b __}Y/3x+y===0:2{a, b},
{x_sc __ >V }/5x+y===0n{c}}];

NormWord [w_List] :=
Sort[Flatten[Table[ {RotateLeft[w, i], RotateLeft[-Reverse[w], 1]}, {i, 1, Length[w]}], 1]1]1[[1]]

ReducePresentation[{gen , rel }] :=
Module[ {gm = gen, rm = Map [ReducelWord, rel]},
Monitor[
ReplaceRepeated[ {gm, Sort[DeleteCases [Map [ReduceWord, rm], {}11},
{{g_s {r__s {-x_|x_}ss___}}=»
{gm = DeleteCases [g, x], rm = DeleteCases [Map [ReduceWord, {r, s} /. x= 0], {}1},
{9 > {r___>s{w___»-X_5V___}ss___}}/;FreeQ[{w, v}, x | -x] =
{gm = DeleteCases[g, x], rm = Sort [DeleteCases [Map [ReduceWord, {r, s} /.
{-x > Apply [Sequence, -Reverse[{v, w}]], x > Apply[Sequence, {v, w}1}], {}11},
(g9 s {r___s{w __s x sv___}ss___}}/;FreeQ[{w, v}, x| -x] =
{gm = DeleteCases [g, x], rm = Sort[DeleteCases [Map [ReduceWord, {r, s} /.
{-x > Apply[Sequence, {v, w}], x :» Apply[Sequence, -Reverse[{v, w}]]}], {}]1}}];
{gm, rm = Union[Map[NormWord, rm]]}, {Length[gm], Length[rm]}]]

WordForm[w_List] :=
Apply [SequenceForm, ReplaceRepeated[ReduceWord[w] /. {-Xx_ = x" (-1)},

{a___,x_ "(e_:1), x_ ™(f_ 1), b___}y=»{a, x*(e+f), b}11 /. x_"n_: Superscript[x, n]

PresentationForm[{gen_, rel_}] := {gen, Map[WordForm, rel]}
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