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Introduction

The term 'knot’ is part of everyday life, like the knot of the shoes, the knot
of the tie and many others, but a ‘'mathematical knot’ is different because its
ends are joined so that it cannot be untied.

The theory of knots is a branch of geometry, in particular of topology, whose
main purpose is to study the topological properties of a closed curve in Eu-
clidean space.

The first to approach such a theory were Vandermonde and Gauss in the
second half of the eighteenth century but the most rigorous approach was in
1860, thanks to an idea of the Irish physicist Lord Kelvin, who hypothesized
that matter was made up of atoms — vortices (or eddies), i.e. that the el-
ements are knots in the ‘ether’. This hypothesis prompted his collaborator,
the English physicist Tait, to engage in the classification of knots and in the
search for a relationship between the classes of equivalent knots and the types
of atoms. Each element of the periodic table had assigned a knot type.
From the point of view of Physics, Kelvin and Tait were on the wrong track,
in fact the theories that used an ether (i.e. a substance that fills the space
and which is necessary for the propagation of electromagnetic waves) have
become obsolete. Instead from the point of view of Mathematics they had
discovered a new research topic that is still evolving today. The theory of
knots gained new life only in 1900, when its potential was understood as a
tool that can also be applied in other scientific fields such as Physics and Bi-
ology. In particular, the mathematical knot theory was used to study knots
in the protein chains.

In the last twenty-five years numerous studies have revealed that there are
proteins whose main chain fold into non-trivial topologies and there is the
presence of knots in their conformation.

The precise nature of the structural and functional advantages created by the
presence of knots in the protein backbone is a subject of high interest from
both experimental and theoretical point of view and to better understand
this open problem, several attempts have been made towards the characteri-
zation and classification of the protein chains based on their knot type. This



characterization required the accepting that linear chains can be knotted.
If we pull the ends of a given strand of string we can decide whether it is
knotted or not. Because we hold the ends, the string and our body form a
closed circle and there is no danger of untying the knot as it is pulled. In
knot theory, any open arc (indipendently of the degree of entanglement) is
topologically equivalent to a straight line, since it can be continuously de-
formed to a straight line.

Proteins in their native folded structure are frequently quite rigid and a con-
tinuous deformation from protein chain to a straight line is not allowed. So
the analysis of their knottedness is done for their open chains with fixed
geometry. Until recently, the characterization of knottedness of proteins re-
quired closure of protein chains since available knot invariants could only
make sense for closed curves but now we can study the knottedness of pro-
tein for open curves, using knotoid invariants.

The theory of knotoids is recent and it was introduced by Vladimir Turaev
in 2012.

The purpose of this thesis is to study theory of knotoids that is a general-
ization of the theory of knots. We will describe the polynomial invariants
of knotoids that are currently used to analyze the topology of open protein
chains. Namely, the Jones polynomial, the Turaev loop bracket polynomial,
the arrow polynomial and the loop arrow polynomia.

Afterwords it will be seen why the planar knotoids provide a more detailed
overview of the topology of an open chain compared to knots and to knotoids
on the sphere.

Finally, we will describe how the knotoid approach is used to analyse knot-
tedness of entire protein chains and of their all possible subchains.



Chapter 1

Hints of knot theory

1.1 Some definitions

Definition 1.1.1. A knot K C R is a closed simple curve in the space
R3, that is, any topological subspace of R?, topologically equivalent to the
circumference S*.

The circumference, therefore, is also a knot and it is called trivial knot. Recall
that two topological spaces are said to be topologically equivalent if there
is a homeomorphism, that is, a one-to-one function, continuous and with a
continuous inverse, which sends one onto the other.

o & &

Unknot Trefoil knot Eight knot
(trivial knot)

The disjoint union of n knots is called n-components link (n-link) or link.

DY

Hopf link Whitehead link Borromean rings

Definition 1.1.2. Two countinuous applications f,g : X — Y between
topological spaces are homotopic if there exists a family of countinuous ap-
plications h; : X — Y which depend in continuous way of the parameter



t € [0,1], such that hy = f and hy = g. It is therefore required that the
application be continuous H : X x [0,1] — Y is defined H(z,t) = hi(x) for
every (z,t) € X x [0;1].

H is called homotopy between f and g

Definition 1.1.3. Two continuous applications f,g: S — S of a topological
space S are isotopic if there exist a homotopy H between f and gsuch that
hy : S — S is a topological transformation for every ¢ € [0, 1].

In this case H is called isotopy between f and g. Moreover, if f is the identity
of S, then we say that g : S — §' is realisible by isotopy.

Definition 1.1.4. Two knots K; e K5 are equivalent if there exists a home-
omorphism A : R? — R3 such that h(K;) = K».

Definition 1.1.5. Two knots K; e Ky are isotopically equivalent if there
exists a homeomorphism of R® — R? isotopic to the identity such that
h(K7) = K;. In this case we write K; = K>

Ezample

Figure 1.1: The right-handed trefoil knot a) is equivalent to the left-handed trefoil
knot b) but it is not isotopically equivalent to it (there not exists a continuous
deformation from a) to b)). The equivalence is realized only with a homeomorphism
that inverts the orientation.

Definition 1.1.6. An oriented knot is a knot with a specified orientation.
Similarly, we define an oriented link as a link with a specified orientation on
each component.
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Definition 1.1.7. A knot K isotopic to its symmetric is called an achiral
knot, i.e. if K = o(K) where o is a reflection. Otherwise it is called a chiral
knot.

For example the trefoil knot is chiral.

Definition 1.1.8. A link K C R? is called

trivial if it is isotopic to a the disjoint union of copies of S*, i.e. it is possible
to deform the knot so as to obtain a finite number of circumferences in the
plane

K=S5"U..uS!cR%
symmetric if it is isotopic to a mirror reflection
K = K = o(K), where o is a reflection;
invertible if it is isotopic at the same knot with the opposite orientation

K=-K.

1.2 Knots and their diagrams

Given a knot K, we choose a direction v in space and a plane perpendicular
to it on which we draw an orthogonal projection w(K) of the knot.
The orthogonal projection in R? satisfies the following properties:

e no more than two distinct points are projected in the same point;

e the projections of the two strands in each double point must not be
tangent

e the projection is a regular map, i.e there is not vertical tangencys;
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Figure 1.2: Unacceptable situations

X

Figure 1.3: Double point

T

Definition 1.2.1. A diagram D € of a knot K C R3 is a projection into a
plane with the over/under crossing data at each double point.

@ K c R? -

_

[&] E

The strand that passes
under is interrupt

Theorem 1 (Redeimester’s Theorem). Two diagrams in R? represent iso-
topically equivalent links if and only if they can be obtained one from the
other by a finite sequence of planar isotopies and Reidemeister moves. These

mowes, or local changes, allow us to vary a small portion of the diagram while
leaving the rest unchanged.
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Figure 1.4: Reidemeister moves
2, adds/removes a curl
Q9 overlaps one strand to another
Q3 allows the passage of a strand over a crossing

Figure 1.5: Planar isotopy



Definition 1.2.2. The construction of a Seifert surface of a knot £* in S*
from a knot diagram D of k*. Every crossing of D admits a unique smoothing
compatible with the orientation of k*.

X)X

Applying these smoothings to all crossings of D and we obtain a closed
oriented 1-manifold D c S2. This D consists of disjoint simple closed curves
and bounds a system of disjoint disks in S® lying above S?. These disks
together with half-twisted strips at the crossings form a compact connected

orientable surface S in S® bounded by k*.

D) —|D|+1
D) = 1D+ where ¢(D) is

The genus of this surface S is equal to g(S) =

the number of crossings of D and |D| is the number of components of D.
This gives us an estimate from above for the Seifert genus of £*:

oK) < ¢(D) —|D|+1

1.3 Connected sum of knots

Definition 1.3.1. Given K;,K5 C R3 knots. We produce an other knot K
starting from K;,K, doing the connected sum of these knots, as follows.
We consider K! = K; with K| and K, separated by a plane except a common
arc A=K] N K} in the plane. Then we define:

K= Kl#KQ == Cl(Kl U K2 - A)



The connected sum is well defined up to isotopy. In fact, it does not
matter K| and K/ are chosen. The arcs on the plane are all equivalent then

we can assume A to be a segment.
The connected sum is commutative and associative.

(@

(1)
Y -0
(3% {4}@ ™

Figure 1.6: Commutative property
K,#K, has as neutral element the circumference S*

K#S'= K

N
24U
\_\//
K st

We can contract the circunference at an arc and we obtain K.

In other words the connect sum of two knots is given by: K = K #K, if
and only if there exists a sphere S C R? such that K NS = {p,q}

Ki=(KNIS)UA
Ky=(KNE(S)UA

where A C S is an arc between p and ¢, I1(S) is the interior of S and E(5)

is the exterior of S.



Definition 1.3.2. K C R? knot is prime if any time that we write K as
connected sum K = K 1#K,, K; or K is trivial. Otherwise K is composite.

1.4 Hints of virtual knot

|

Figure 1.7: Virtual knot representations

%

Definition 1.4.1. A virtual knot in a thickened surface of some genus can
be represented by a virtual knot diagram in S? or in R? that contains a finite
number of classical crossings and virtual corssings.

A virtual crossing is neither an over-crossing nor an under-crossing and
it is indicated by a small circle placed around a crossing point as shown in
Figure 1.8. The arcs containing a virtual crossing correspond to arcs of the
virtual knot one of which lies at the front of a handle and the other lies at
the back of the same handle of the thickened surface. The moves on virtual
knot diagrams are generated by the Reidemeister moves (Figure 7?) plus the
detour move. The detour move allows a segment with consecutive sequence
of virtual crossings to be excised and replaced any other such a segment with
a consecutive virtual crossings as shown in Figure 1.10. Two virtual knot
diagrams are virtually equivalent if they can be related to each other by a
finite sequence of the Reidemeister and detour moves. A virtual knot is a
virtual equivalence class of virtual knot diagrams.

10
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virtual crossings
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Figure 1.8: Handle detours for virtual crossings

5
T =DC T =DC
% R
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<>

Figure 1.9: Reidemeister moves

- e

Figure 1.10: Detour move
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Chapter 2

Knotoids

Knotoids were first introduced by Vladimir Turaev in 2021 as a generalisation
of knots in S3.

The main purpose of knotoids is to deal with the problem of defining and
classifying knottiness for open curves.

2.1 Preliminary definitions

Definition 2.1.1. A knotoid diagram K in a surface ¥ = R? or S? is
a generic immersion of the interval [0, 1] in 3 with finitely many transverse
double points endowed with over/undercrossing data.

A double point of the diagram is called classical crossing.

The images of the points 0 and 1 are called tail and head respectively, and
denoted by vy and vy, moreover they are the endpoints of the diagram.
These two points are distinct from each other and from each other point.
Knotoid diagrams are oriented from the tail to the head.

(1) (2) (4)

XN D) A o) )
' A | L Nl; Xf Y,
\ \_ED -

L ] |
Uy &“-—-"/ vy w iJ/ i _ _ \ _/

Figure 2.1: Examples of knotoids diagrams
The trivial knotoid diagram is an embedding of the unit interval into S? or
R2. Tt is depicted by an arc without any crossings as shown in Figure (1).

12



Definition 2.1.2. A multi-knotoid diagram in an oriented surface X is
a generic immersion of a single oriented segment and a number of oriented
circles in 3 endowed with under/over-crossing data.

(2) (3)

N O 4 b ) //\\
Q/ % 7 ) &

1")(
.

—

,«'
[]

Figure 2.2: Examples of multi-knotoids diagrams

Definition 2.1.3. Two knotoid (or multi-knotoid) diagrams are (isotopi-
cally) equivalent if they may be obtained from each other by a finite sequence
of isotopies and the Reidemeister moves. See Figure 1.2

Definition 2.1.4. There are two forbidden moves () and 2, that pull
the strand adjacent to an endpoit (tail or head) under or over a trasversal
strands.

Figure 2.3: Forbidden moves

Notice that if the moves €2_ and €2, are allowed, any knotoid diagram in
> can be turned into the trivial knotoid diagram.

Definition 2.1.5. A knotoid (or multi-knotoid) is an equivalence class of
knotoid (multi-knotoids) diagrams determined by the isotopically equivalence

relation.
The set of knotoids in ¥ is denoted IC(X).

13



Definition 2.1.6. The knotoids admit involutive operations:

% DY
o AN,
sym(K) rot(K)

Given a knotoid diagram K:
— K is its reversion which consists in changing the orientation of the kno-
toid diagram (or changing the tail with the head);
mir(K) is its mirror reflection that transforms a knotoid into a knotoid
represented by the same diagram but with all the crossings changed;
sym(K) is its symmetric that reflects a knotoid diagram with respect to
the line in R? passing through the endpoints;
rot(K) is its rotation that is defined as the composition of symmetry and
mirror reflection. rot(K) = mir(sym(K))

Definition 2.1.7. Local regions of diagrams

If we ignore the over/undercrossing information of a knotoid diagram K, we
obtain a planar graph with n + 2 vertices (n corresponds to the number of
crossings of K and 2 correspond at endpoints) and the edges correspond to
the arcs of K. This graph G of the knotoid diagram K divides S? into n + 1
regions.

We label the arcs of the local regions of a diagram in this way:

- we consider G;

- we start from the tail and we lebel it with 0;

- we move along the graph and each time that we meet a crossing, the fol-
lowing arc increases the label by one.

To determinate the local regions of diagram is necessary to do the following:
- we choose a vertex that corresponds to a crossing and we choose an arc
that is connected to that vertex;

- we move in a clockwise way and we follow the closed path on the graph
that loops back to the chosen arc.

Note that each arc is adjacent to two local regions, except the two arcs that

14



are directly connected to an endpoint.
For example, the following diagram has n = 2 crossings than we have 2 + 1
local regions, in fact:

i )
re: 1,4, 2
i S P |
3
4 3

2.2 Differences between planar and spherical
knotoids

We mostly focus on the case ¥ = S? or R?.
The set of all knotoids in S? is denoted K(S?) and we shall call these knotoids
spherical, while the knotoids planar are in R? and the their set is K(IR?).

The planar knotoids provide a more refined way to classify knotoids bea-
cause there are examples of knotoids that are non-trivial on the plane but
become trivial when they are considered in S2.

/)
(B)

(A)

If we consider the nontrivial planar knotoids given in the figure, we can
deform the knotoid but we will never have the freedom to move arcs in a way
that will unknot the curve withouth violating the forbidden moves.

If we consider the same knotoid in the sphere, it’s trivial!

15
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We can take an arc of the knotoid diagram in S?, push it towards a pole
of the sphere, across it and all the way around the surface of S?, with the
application of the Reidemeister move 2y for two times, we obtain the trivial
knotoid. (The dotted lines indicate parts of the diagram that are on the back
side of the sphere.)

There is an application between the two sets of knotoids
¢t K(R?) — K(S?) that is induced by the inclusion R? < S? = R?U oo.
The map ¢ is surjective but not injective. Indeed, for example, the knotoids
(A) and (B) are equivalent in S? but not in R2.

2.2.1 Knotoids and knot theory

Definition 2.2.1. Given a knotoid diagram K, one way to obtain a knot
diagram is to connect the endpoints of K by an arc which goes under (or
over) each strand of the diagram that it meets. This arc is called a shortcut
of K.

The knot diagram obtained by connecting the endpoints of K with a shortcut
is called an underpass closure (or overpass closure) of K. These operations
induce well defined maps:

wy : {Knotoids} — {Knots}

w_ is the underpass closure map while w, is the overpass closure map
We can indicate the knot diagram obteined by overpass(or underpass) closure
by K, and K_, respectively.

Remark 2.2.1. The overpass closure and the underpass closure of a knotoid
diagram may give rise to non-isotopic knots.

16



For example:

—

)
w-_ (h7 j Trefoil knot

7, “ F\I 0,
5 (0) =+ O

Trivial knot

Figure 2.4: Example of overpass-underpass closure

Definition 2.2.2. Every classical knot can be represented by a knotoid di-
agram in S2.

Let k* be a knot in R3. We take an oriented diagram D of k* in S%. By
cutting out an arc from D that doesn’t contains crossing or that contains
only crossing which are overcrossing (or undercrossing). Then we obtain a
knotoid diagram.

Remark 2.2.2. By cutting out different arcs of the knot diagram D we may
obtained non-equivalent knotoid diagrams.
For example

. A

Figure 2.5: The images under w_ of the two knotoids are both trefoil knot
but the knotoids diagrams are not equivalent

17



Definition 2.2.3. Spherical knotoids extending classical knot theory
There is an injective map:

a :Classical knots i, 0,04 — Knotoids in 52

(1, Q9,Q3) denotes the equivalence relation generated by the Reidemeister
moves.

We consider an oriented knot diagram D in S?, representing a classical knot
k*. The map « assigns to D the knotoid diagram in S? obtained by deleting
an arc a of D which does not contain any crossings.

Then K = D — a is a knotoid diagram in S? representing k € K(S5?).
Therefore the map « is well-defined.

The diagram K may depend on the choice of a but the knotoid & does
not depend on this choice: when a is pulled along D under (respectively
over) a crossing of D, our procedure yields an equivalent knotoid diagram.
The equivalence is achieved by pushing the strand of D transversal to a at
the crossing in question over (respectively under) D towards oo, then across
oo, and finally back over (respectively under) D from the other side of a.
(This application expands as a composition of isotopies, moves Q;tl, Qéﬂ and,
at the very end, two moves Q).

That k does not depend on the choice od D is clear because for any Reide-
meister move on D or a local isotopy of D, we can choose the arc a outside
the disk where this move/isotopy modifies D.

For the injectivity of «, it is sufficient to see that underpass and overpass
closures of any knotoid that is in the image of the map «, are equivalent knot
diagrams.

A knotoid in S? that is in the image of «, is called a knot-type knotoid
and it has both endpoints in the same region of its representative diagram.
A knotoid that is not in the image of «, is called a proper knotoid and the
endpoints can be in any local region of its representative diagram.

The set of knotoids, K(S5?) can be regarded as the union of the set of knot-
type knotoids and the set of proper knotoids.

If we consider the Figure 2.1 in S?, the examples of knot-type knotoid dia-
grams are (1),(2),(5), and (3),(4) illustrate some examples of proper knotoid
diagrams.

Remark 2.2.3. There is a 1-1 corrispondece between knot-type knotoids
and classical knots, induced by the operation of closing the endpoints.

Definition 2.2.4. The height (or the complexity) of a knotoid diagram K C
S? is the minimum number of crossings that a shortcut creates during the
underpass closure. The height of a knotoid k € K(S5?) is the minimum of the

18



heights of the diagrams of k and it is denoted by h(k).
A knotoid in S? is of knot-type if and only if its height is zero or equivalently
a knotoid in S? has nonzero height if and only it is a proper knotoid.

Definition 2.2.5. A knotoid diagram in R? is said to be normal if its
tail vg lies in the outermost region (the unbounded one) of the diagram. Any
knotoid diagram in S? is in correspondence with normal knotoid diagram.

Definition 2.2.6. It is possible to connect the endpoints of a knotoid dia-
gram in S? in the virtual fashion, this induces a well defined map from the
set of classical knots to the set of virtual knots of genus at most 1. This map
is called the virtual closure map and is denoted by v. The endpoints of a
knotoid diagram can be connected with an embedded arc in S? but this time
a virtual crossing is created every time the connection arc crosses a strand
of the diagram. The resulting virtual knot diagram can be represented in a
torus by attaching a 1-handle to S? which holds the connection arc.

v : {Knotoids in S*} — {Virtual knots of genus < 1}

N o 5“__________ attach a 1-handle

D

Figure 2.6: The virtual closure of a knotoid diagram

The virtual knot assigned to a knotoid K in S? via the virtual closure map
is called the virtual closure of K, and is denoted by v(K).
An example of a pair of knotoid diagrams K, K5, whose virtual closures are

the same virtual knot.
OO
[ x

We have already seen that the underpass closure of K is the trefoil knot,

19



and the underpass closure of Ks is the unknot (in Figure 2.4 ).
K, and K, are two non-equivalent knotoid diagrams, and so, the virtual
closure map is not an injective map.

Remark 2.2.4. The virtual closure of a knot-type knotoid is a classical knot.
It follows from Korablev and May [6] that the virtual closure will produce a
genus 0 knot only if the knotoid is of knot-type, i.e. only if the knotoid has
height 0.

20



2.3 Multiplication of knotoids

Multiplication of knotoids is the analogue for connected sum of knots.

Definition 2.3.1. Each endpoint of a knotoid diagram K in S? admits a
2-disk (a neighbourhood) D such that K intersect D precisely along one arc
of D, i.e. a radius of D.

Given two diagrams K; and K, in S? representing the knotoids k; and ko,
we consider a 2-disk D; on the head v; of K and a 2-disk D, on the tail v
of KQ.

The multiplication of knotoids k = kq - ko is defined as follows.

We glue S% — Int(D;) to S? — Int(D,) through a homeomorphism taking
0Dy to 0D, and carrying the single intersection point of 9D, N K to the
single intersection point of DN Ky, Then K7 — Int(D;) meets Ko— Int(Dy)
at one point and form a knotoid diagram K - Ky representing the knotoid
ki - ko in S?2. Note that the multiplication of spherical knotoids has a clear
representation in terms of normal knotoid diagrams.

ky k, ky ks
=N
{\ yl '\ /’f;\ V1 1 / -'l
—_ X\ '/
=%, \/___,,/
VU i

Figure 2.7: Example of multiplication of knotoids

Definition 2.3.2. A knotoid k in (S?) is called prime if it is not the trivial
knotoid and k = k; - ko implies that either k; or ks is the trivial knotoid.

21



2.4 Geometric interpretation of knotoids

2.4.1 Planar knotoids

A knotoid diagram gives rise to a multitude of embedded open curves in the
three-dimensional space in the following way.

SEN Y

tXR AhAXR

Figure 2.8: Examplex of open curves in the 3-dimensional space (in red)
obtained by the knotoid diagram (in gray)

Let K be a knotoid diagram in R2. The plane of the diagram is identified
with R?x {0} C R3.

K can be embedded into R? by pushing the overpasses of the diagram into
the upper half-space and the underpasses into the lower half-space, while
keeping the endpoints attached to the two lines {t} xR and {h} xR that pass
respectively through the tail and the head, the two lines are perpendicular
to the plane of the diagram.

Moving the endpoints of K along these special lines gives rise to open oriented
curves embedded in R? with the two endpoints constrained to move along
these lines.

Definition 2.4.1. Two open oriented curves embedded in R?® with the end-
points that are attached to two special lines, are said to be line isotopic if
there is an (ambient) isotopy of the triple (R3, {t} x R, {h} x R), taking one
curve to the other curve.

The other way around, let be given an open oriented embedded curve in
R3 with a generic projection to the zy-plane.
The endpoints of the curve determine two lines passing through the end-
points and perpendicular to the plane. The generic projection of the curve

22



to the xy-plane along the lines with self-intersections endowed with over and
under-crossing data, is a knotoid diagram in R2.

A generic curve with respect to the xry-plane is a smooth open embed-
ded curve in R3 that has a generic projection to the zy-plane. Such a curve
determines a line isotopy class as described before.

Theorem 2. Two smooth open oriented curves in R? that are generic with re-
spect to the xy-plane are line isotopic with respect to the lines passing through
the endpoints of the curves if and only if their generic projections to the xy-
plane are equivalent knotoid diagrams, i.e. they are related by Reidemeister
moves §; (i =1,2,3) in the plane.

Proof. Since everything is set in the smooth category, we can switch to the
piecewise linear category.

Open curves are defined as piecewise linear curves in R?, that is, as a union
of finitely many edges: [p1, pal,-..,[Pn_1, Pn| such that each edge intersects one
or two other edges at the points, p; , ¢ = 2,...,n — 1 and p; and p, are the
endpoints of the curve.

We define the triangle move in 3-dimensional space.

Given an open curve with endpoints on the lines, let [p;, p;11| be an edge of
the curve and py be a point in general position. The edge is transformed to
two edges [p; , po|] and [po,pi+1] which form a triangle, whenever this triangle
is not pierced by another edge of the curve or by the lines.

In other words, a consecutive sequence of two edges may be transformed to
one edge by a triangle move.

An ambient isotopy of a piecewise linear curve in the complement of the
two lines can be expressed by a finite sequence of triangle moves. By using
triangle moves we can subdivide the edges into smaller edges; we can see any
triangle move can be factorited into a sequence of smaller triangular moves
by subdividing the triangles and the edges accordingly.

P
-
P

Py
/D—PJ\J'/;I/.\{I\—'*/AO—/\_\/—Q—/

Figure 2.9: Subdivision of an edge

Consider the projection of a curve to the plane, the triangle where a
triangular moves takes place is projected to a non-singular triangle.
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.1 - B3

This triangle can contain many strands which are the projection of other

IR
;?L — :\/ ,fr/‘\ jﬂ
- XK FE- X

Figure 2.10: The strands in the triangle show that triangle moves are gener-
ated by Reidemeister moves. The right side of the figure shows some cases
that are finite combinations of Reidemeister moves.
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2.4.2 Spherical knotoids

In this subsection we present a geometric interpretation introduced by Turaev
of spherical knotoids via #-curves.

Definition 2.4.2. A theta-curve ¢ is a graph embedded in S® with two
vertices vy and v; (the tail and the head of 0 respectively) and three edges
e_, eg, e, each of which joins vy to v;.
Every vertex v € {vg,v1} of 6 has a closed 3-dimensional ball neighborhood
B C S? meeting 6 along three radii of B.
B is called a reqular neighnorhood of v.
The curves

0_=e_Ueg Op=e_Ues 0, =er Ueg
are knots in S®. We orient 6_ and 6, coherently to ey, while we can choose
the orientation of theta.
These knots are called costituent knots of 6.
Two O-curves are isotopic if thery are related by an ambient isotopy that
preserves the labels 0,1 of the vertices an the lables —, 0, 4+ of the edges.
A f-curve is called simple if its constituent knot 6y = e_ U e, is the trivial
knot. ©% is the set of simple labelled #-curves in S3.

€4

" )

Figure 2.11: An example of a simple f-curve

In general the set of f-curves will be denoted by © and it has a binary
operation called the vertex multiplication.

Definition 2.4.3. Vertex multiplication: Given #-curves 6 and 6', pick
neighborhoods B and B’ of the head of 6 and of the leg of #’, respectively. Let
us glue the closed 3-balls S3—Int(B) and S®—1Int(B’) through an orientation-
reversing homeomorphism 0B — dB’ carrying the only point of OB lying on
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the i-th edge of 6 to the only point of 0B’ lying on the i-th edge of ¢ for
i=—,0,+.

The part of ¢ lying in S® — (B) and the part of ¢’ lying in S® — Int(B’) meet
in 3 points and form a #-curve in S® denoted 6¢'.

Definition 2.4.4. 6 is standard f-curve if:

1) 6 C R?

2) both vertices of 0 lie in R* = R? x {0};

3) the edge e, lies in the upper half-space;

4) the edge e_ lies in the lower half-space;

5) e_, ey project bijectively to the same embedded arc a C R? connecting vy
and v;.

Remark 2.4.1. Any simple theta curve § C S® is isotopic to a standard
theta-curve. To see this, we put 6 away from oo € S® so that § C R?, pick a
disk for fy and apply an isotopy this disk to a vertical one.

Theorem 3. An orientation preserving diffeomorphism f : S — S® fizing
pointwise an unknotted circle S C S® is isotopic to the identity in the class
of diffeomorphisms S® — S? fizing S pointwise.

Remark 2.4.2. If two standard theta-curves 6,0’ C R? are isotopic, then
they are isotopic in the class of standard theta-curves.

Indeed, we can deform 6 in the class of standard theta-curves so that 6 and
0’ share the same vertices and the same +-labeled edges.

Let S be the union of these vertices and edges. The set S is an unknotted
circle in S3.

Since 6 is isotopic to @', there is an orientation-preserving diffeomorphism
f 8% — 83 carrying 6 onto #" and preserving the labels of the vertices and
the edges. Then f(S) = S. Deforming f , we can assume that f|s = id.

By the previous theorem, f is isotopic to the identity id : S* — S3 in the
class of diffeomorphisms fixing S pointwise. This isotopy induces an isotopy
of 8 to 0 in the class of standard theta-curves.
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2.5 Flat knotoids

Definition 2.5.1. A flat knotoid diagram FKD is a diagram in S? (or in
R?) with flat crossings and two endpoints that are distinct from each other
and from any crossings. The flat crossings are the transversal intersections of
strands without any under/over-crossing information. Endpoints are named
the tail and the head of the diagram.

A FKD is called trivial if it has no crossings (i.e. if it is an embedding of
[0,1]). A FKD can be viewed as a graph embedded into S2.

A FKD has two univalent vertices (the endpoints) and all its other vertices
(the crossings of the FDK) are 4-valent.

The edges of the graph are called the edges of the FKD. Two edges adjacent
to the endpoints are called the outer edges.

Given a FKD F C S?, connected components of the set S? — I are called
the regions of the FKD F.

Definition 2.5.2. A flat knotoid diagram F is called prime if:

(i)Every embedded circle meeting F' transversely in exactly two points bounds
a disk meeting F' along a proper embedded arc or along two disjoint embed-
ded arcs adjacent to the endpoints of F.

(i) Every embedded circle meeting F' transversely in exactly one point bounds
a regular neighborhood of one of the endpoints of F'.

Eramples:

Figure 2.12: Two examples of non-prime FKD. The left FKD does not satisfy
condition (i), the right FKD does not satisfy condition (ii)

Definition 2.5.3. Let F' be a FKD with a shortcut a (i.e an edge that
connects endpoints of F).
A shortcut a is called the minimal shortcut of F if the cardinality
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|Intan F| = h(F)

where Int a denotes the interior of the shortcut and h(F') is the height of F'
(see definition 2.2.4).

An edge e of F is called the a-edge of F' if either e is an outer edge or
eNa# 0.

A connected component A of the set S? — F' is called the a-region of F if
AnNa#0.

Ezample:

N

"1\

Figure 2.13: FKD with a shortcut a. The a-regions are orange, and the
a-edges are drawn in blue

7

Theorem 4. Let F' be a non-trivial FKD with minimal shortcut a.

(1) If A is a a-region then a intersects OA in exactly two points which are
inside two distinct a-edges.

(2) If F' is prime and both regions adjacent to an edge e are a-regions then e
s the a-edge.

Proof. (1) The interior of a shortcut intersects with a FKD transversely in a
finite number of points.

By definition of a a-region A is connected and 0A C F. The number of inter-
sections of a with JA is finite and is greater than 1. Let 9ANa = {p1, ..., pn}
where n > 2 and the points py, ..., p, are numerated in the order in which a
passes trought them.

If n > 2 the part of a between p; and p, contains at least one intersection
with F' and this contradicts the minimality of the shortcut a.

In fact, if we replace the part [p1, p,] C a with a simple arc in A that connects
p1 with p,,, then the resulting shortcut has less intersections with F' than the
initial one.
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If n=2,an9dA = {p,p2} and we can show that p;,ps there are not in
the same a-edge.
We assume the contrary: there exists an edge e such that pi, ps € e.
If e is an outer edge then py can not be the other endpoint of the edge e
because, by definition, a shortcut does not passes through a crossings and,
by hypothesis, F' is non-trivial. So we can decrease by one the number of
intersections of a with F' by connecting p; with a point immediately after ps.
If e is not an outer edge then crosses a in different directions (it comes into
A in p; and then goes out in py) because otherwise |a N OA| > 3. So we can
decrease by 2 the number of intersection pushing the arc [py, ps] C a from A
across the edge e.

(2) If the edge e is an outer edge then it is an a-edge by definition.

Let e is not an outer edge. We suppose that e is not a a-edge, i.e. aNe =10
and we denote a-regions adjacent to e by Ay, A,.

If Ay # As, the shortcut a is minimal and the regions Ay, Ay are a-regions.
By assumption, a N e = () hence there exists an a-edge that we called €’ such
that a-regions adjacent to €’are the same A, Ay. Thus A; and A, have two
different common edges. There exists an embedded circle which intersects F
in exactly two points lying inside e and ¢’. Both disks bounded by the circle
contain crossings of F' (the endpoints of e and ¢’). The existence of such a
circle contradicts to condition (i) of the definition of prime FKD.

If Ay = Ay, it means that the endpoints of e do not coincide. In this situation
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there exists an embedded circle which intersects with F' in exactly one point
that is in the edge e. Both disks bounded by the circle contain crossings
of F' (the endpoints of e¢). The existence of such a circle contradicts to the
condition (ii) of the definition of prime FKD. O

Two consequences of the previous theorem:
1) If an edge e of a FKD F' with a minimal shortcut a is an a-edge then e is
not a loop.
2) The minimal shortcut a of a prime FKD F' crosses through a-regions se-
quentially one-by-one without coming back to already visited regions. If we
go from an a-region to the next a-region, a crosses a a-edge that is the only
common edge of these two regions.
By the definition 2.2.4 of the height, the interior of a crosses F' exactly h(F)
times, then there are h(F') + 1 pairwise distinct a-regions. Each of these
a-regions has common edges with two other a-regions, while the first and the
last a-regions has common edge with only one other a-region. The first one
and the last one coincide for FKD of the height 0. So there is a natural num-
bering of a-regions of a prime FKD F' with fixed minimal shortcut a according
to the order in which the shortcut a traverses the regions. Ag, Ay, ..., Apr)
where Ag and Ah(F)) are a-regions adjacent to the beginning and to the
end of F.

Definition 2.5.4. Let x is a crossing of FKD F' with a shortcut a.

We will say that the crossing x is of the type n, 0 < n < 4, if z is
adjacent to exactly n a-edges.

The type of a crossing depends on the choice of a shortcut.

Denote by ¢, (F,a) the number of crossings of FKD F' having the type n with
respect to the shortcut a.

I

Figure 2.14: All types of crossing neighbourhoods. a-regions are orange and
a-edges are drawn in blue
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Ezample:

Y

5

7
(%

Lemma 1. If F'is a prime FKD with a minimal shortcut a then c3(F,a) =
ca(F,a) = 0.

Proof. Let x be a crossing of F.

We uppose that x is of the type 3, then exactly 3 of edges adjacent to x
are a-edges while the fourth edge that we denote by e is not a-edge. By the
statement (2) of the theorem 4 at least one of regions adjacent to e is not a
a-region.

Hence at least one of regions adjacent to the crossing = is not an a-region
and by statement (2) at least 2 of edges adjacent to = are not a-edges, then
this contradicts our assumption that z is of the type 3.

We suppose a crossing x is of the type 4, then we denote by e, ey, €3, €4 edges
adjacent to x; by definition, all these edges are a-edges and none of them is
a loop. Put p, =ane;, (i =1,...,4). Note that in all possible situations we
can connect p; either with ps or with py by an arc not intersecting F'.
Hence the shortcut a is not minimal. This contrads the hypothesis of the
lemma. O

Theorem 5. Let F' be a prime FKD with a minimal shortcut a.
Then following inequalities are equivalent:

c(F) > 2h(F)
and
co(F,a) +2 > co(F,a)

Proof. By the previous lemma
c(F) =co(F,a)+ c1(F,a) + co( F,a) (©)

and a-edge has distinct endpoints because it is not a loop.

Then the total number of crossings (that are endpoints of a-edges) is equal
to 2h(F')+2, where 2h(F’) are non-outer a-edges and +2 are the outer edges.
We can write:
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2h(F) 4+ 2 = c1(F,a) + 2c2(F, a) (%)
Now (<&)-(x) gives
c(F)—=2h(F) —2=co(F,a)+ c1(F,a) + co(F,a) — c1(F,a) — 2c5(F, a)
and we get
co(F) —2h(F) —2=cy(F,a) — c2(F,a).
Hence
c¢(F) = 2h(F) = co(F,a) — co(F,a) + 2

where in the left-hand side there is a difference between the left-hand side
and the right-hand side of the first inequality of the theorem, while the right-
hand there is a difference between the left-hand side and the right-hand side
of the second inequality of the theorem. O

Definition 2.5.5. Let F' be a FKD, and R;,R, be two of its regions.

p(Ry, Ry) is the distance between two regions, defined as the minimal
number of intersections of a simple arc starting inside R;, ending inside R,
and along the way intersecting F' transversely in points different from the
crossings and the endpoints of F.

Lemma 2. Let F be a prime FKD with a minimal shortcut a, x is an
exceptional crossing of the type 0 and Ay, Ay are a-regions adjacent to x.
Then:
1 if x is two-sided

P, Re) = {2 if x is one-sided
Definition 2.5.6. Given a FKD F' with a shortcut a. An edge e of F'is called
the border edge if exatly one of the regions adjacent to e is a a-regions. We
can to partition the set of border edges into two disjoint subsets: the union
of shortcut a with outer edges cuts each a-regions and its boundary into two
connected parts, one of them lies to the left and the other lies to the right
of the shortcut a; so a border edge e is called a left boder edge (resp. a
right border edge) if it is contained in the left (resp. the right) part of the
boundare of an a-region adjacent to th edge e.
Denoted by R, the a-domain of F' which is defined to be the union of all
a-regions with the interior of all a-edges and both endpoints of F.
The set S? — R, is the union of all regions which are not a a-regions with all
edges which are not a-edges. OR, consists of all border edges.
In the case of prime FKD we can regard OR, as the closed path in F, which
goes exactly one time along each border edge. We denote the path by P,.
From the fact that the union of a with outer edges divides R, and OR,, into
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two parts, one of which lies on the left of a while the other one lies on the
right, the path can be divided into two parts by two crossings which are
connected by outer edges with the endpoints of F.

One of these parts is formed by all left border edges and other one is formed
by all right border edges.

A left (resp.right) border chain is defined to be a sequence of the left
(resp. the right) border edges, forming a connected subpath of P, .

Below we denote such a chain by F = {ey, ..., e, }.

A left (resp. right) border chain E is called true if the endpoints of E are
either of the type 2 or one-sided left (resp. right) exceptional crossing of the
type 0.

Figure 2.15: All types of crossing neighbourhoods. a-regions are orange, a-
edges are drawn in blue, the left border chain E; and the right border chain
E,. of a FKD are green

Definition 2.5.7. A crossing x of the type 0 of a FKD F with a shortcut a
is called:

- regular crossing: if at least one of edges adjacent to x is not a border edge;
- exceptional crossing: if all 4 edges adjacent to x are border edges;

- left (resp. right) one-sided exceptional crossing: if all 4 edges adjacent
to x are left (resp. the right) border edges;

Lemma 3. Let F' be a prime FKD with a shortcut a and E be a true border
chain satisfying following conditions:

1. E do not contain a true border chain distinct from FE;

2. None of the endpoints of E is adjacent to an outer edge;

3. E passes through not more than 1 two-sided exceptional crossing.

Then E passes through at least 1 regular crossing.

Proof. We omit the proof that is in the reference [12]. O

Remark 2.5.1. Lemma 3 can not be extended directly to border chains of
which endpoints are adjacent to outer edges. To do this:
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- we consider the crossing = of the type 2, that is adjacent to an outer edge
of a FKD,

- we denote a-edges adjacent to z by e; and e;, where e; is the outer edge
of the FKD. The crossing x is called the left-sided (resp. the right-sided)
crossing of the type 2, if starting at x and going along e, we arrive from
the left (resp. from the right)

Figure 2.16: Left-sided crossing of the type two (on the left) and right-sided
one (on the right)

Lemma 4. Let F' be a prime FKD with a shortcut a, and E be a true border
chain satisfying following conditions:

1. E do not contain a true border chain distinct from FE;

2. If E is a left (resp. right) border chain and an endpoint of E is adjacent
to an outer edge of F' then the endpoint is a left-sided (resp. right-sided)
crossing of the type 2;

3. E passes through no two-sided exceptional crossing.

Then E passes through at least 1 regular crossing.

Proof. Let E be a true left border chain (the proof in the case of the right
border chain is completely analogous). Firstly consider the case in which
both endpoints of E are adjacent to outer edges of F. We assume F does
not pass through a regular crossing and show that it is impossible. By the
first condition of Lemma 4, FE does not pass through neither a crossing of the
type 2 nor a one-sided exceptional crossing. By the third condition E does
not pass through two-sided exceptional crossings. Hence all crossings in E
except its endpoints are of the type 1.

By hypothesis, both endpoints of E are left-sided crossings of the type 2.
Hence the union of E with outer edges of F' forms a path, which goes from the
beginning of I to its end and crosses the rest part of the diagram transversely.
Thus the diagram (which, by definition, is a generic immersion of the segment
into S?) is indeed a generic immersion of a disconnected 1-manifold, i.e. in
this case the diagram in question is not a FKD. If both endpoints of E are
not adjacent to outer edges, then required property follows from Lemma 3.
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So it is remains to consider the case, when exactly one of endpoints (say
the beginning) is adjacent to an outer edge of F'. Then, by hypothesis, the
endpoint is left-sided crossing of the type 2. In such a situation we can use
the same trick as in the case of kK = 0 in the proof of Lemma 3. m

Lemma 5. Let F' be a prime FKD with a minimal shortcut a , and E be a
left (resp. right) border chain which starts and ends at the same one-sided
exceptional left (resp. right) crossing of the type 0. Then

1. E passes through not more than one crossing of the type 2,

2. If E passes through an exceptional crossing of the type 0 distinct from its
endpoints, then E passes through the crossing twice.

Proof. We omit the proof. You can find it in the reference [12]. O
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2.6 (Gauss code

Gauss codes encode the knotoid diagrams in a way that can be easily handled
by a computer.

The standard notations for encoding knotoid diagrams in S? is the oriented
Gauss code.

Gauss code = (Crossings(or Gauss word), Signs)

Crossings (or Gauss word): it is a sequence of labels that are assigned to
diagram’s crossings starting from one end and proceeding to the other. When
traveling along the diagram and we meet the crossings to label them we use
strictly increasing non-negative integers. Each crossing appears twice, once as
an undercrossing and once as an overcrossing. To indicate an undercrossing
we add a "—" before the label and to indicate an overcrossing we add a
"+". Therefore the length of this sequence is 2n, where n is the number of
crossings of the diagram.

Signs: it is a sequence of the signs of each of the crossings of the diagram.
The length of this sequence is n.

LX

Figure 2.17: Signs of the crossings

A positive crossing with sign +1: to overlap the arc above the arc below
(with the correct orientation) we need to turn counterclockwise.

A negative crossing with sign —1: to overlap the arc above the arc below
(with the correct orientation) we need to turn clockwise.

79
L

1/ —

Figure 2.18: Example of Gauss code: 1 —2—12 ++
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For planar knotoids, we attach to the oriented Gauss code a third piece
of information, that is the list of labels of arcs that are adjacent to the outer
of the diagram. This part has no fixed lenght.

Gauss code = (Crossings, Signs, Outside arcs)

The labels are assigned to the arcs by travelling around the diagram and
labelling arcs as we meet them. The labelling of the arcs starts from 0 and
each time we pass through a crossing it increases by one.

: 1
4 ,v‘/ "a.N * o~ \“.
f \
e
. \ \'\2/(' |
1 .‘\'7(___/‘/ + \z_‘/"

Figure 2.19: Example of planar knotoid diagrams that have the same oriented
Gausscode: 1 —2—-12 ++

Figure 2.20: The black numbers correspond to the crossings while the blue
ones to the arcs. The outer region is in yellow.

The extended oriented Gauss code of the left knotoid diagram is:
1-2-12 ++ 023.

The extended oriented Gauss code of the right knotoid diagram is:
1-2-12 +4+ 13

Given a knotoid diagram we get a unique extended oriented Gauss code, by
construction.

The extended oriented Gauss code allows the unique encoding of a planar
knotoid diagram, up to plane isotopy.
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How we can recover the knotoid diagram from the extended oriented
Gauss code?
We consider an extended oriented Gauss code, for example:

1-223-1-3+—— 2

Step 1: We consider the second part of the extended oriented Gauss code:
Signs. In this case we have three crossings (the first is positive and the others
are negative) and we call these crossings 1 , 2, 3 respectivelly.

N /N 7/
T 2 3

Step 2: We consider the first part of the code: Crossings.

"—" indicates an undercrossing while "+'" indicates an overcrossing.
So 1 indicates an  overcrossing in  the  crossing 1,
after we have —2 an undercrossing in the crossing 2 and so on.

By the first part of code we can see what crossings are adjacent and so they
have a common arc.

In the our example we have that: 1 is adjacent to crossings 2 and 3, 2 is
adjacent to crossings 3 and 4, 3 is adjacent to crossings 2 and 1.

%X

2

We connect crossings following the first part of code without creating new
crossings. The starting point is the tail while the ending point is the head.
From the tail to the head we label arcs starting from 0.
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Step 3: By plane isotopy, we can stretching-bending arcs and we can move
crossings (all without creating new crossings). Hence :

This is the planar knotoid 35. (see Appendix B)

Step 4: Now we can control the outside arcs looking the third part of code.
The outside arcs are adjacent to the outside region. In the our example is
the arc 2.

39



Another example: We consider the extended oriented Gauss code:

1-23 -1 -4 -52 -354 +++—+ 0345810

Step 1:
2% LXK
AN AN \ 7/ AN
1 2 3 4 5

Step 2: By the first part of Gauss code we have that:

1 is adjacent to crossing 2, 3, 4;
2 is adjacent to crossings 1, 3, 5;
3 is adjacent to crossings 1, 2, 5;
4 is adjacent to crossings 1 and 5;
5 is adjacent to crossings 2, 3, 4.
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Step 3: By plane isotopy we have:

Step 4:
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2.6.1 Extended oriented Gauss code and involutions

Applying each of the involutions on a knotoid diagram has the following ef-
fects on its extended oriented Gauss code.

Reversion: The reversion involution reverses and renumbers the Gauss word
and reverses the list of signs. Finally, it reverses and renumbers the list of
arcs the are adjacent to the outer region:

1-223-1-3+—— 2 -1-213 -32—-—+— 4

Murror reflection: The mirror reflection involution changes the under-crossings
to over-crossings and the other way around as well as the signs of the cross-
ings in the second part of the extended oriented Gauss code:

1-2-12 ++ 023 -121 -2 — 023

Symmetry: The symmetric involutions changes the signs of the crossings in
the extended oriented Gauss code.

sym(K)2
4 3
2 1
~\1
0
1 -2—-12 ++ 023 1 -2-12 — 023
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Rotation: The rotation involution changes under-crossings to over-crossings
and the other way around.

0\1

1 -2 -12 ++ 023 -121 -2 ++ 023

2.6.2 Gauss code and Reidemeister moves

KNOTOID DIAGRAMS IN 52

Using the oriented Gauss code, we can encode the application of Reidemeister
moves on a knotoid diagram in S?. We denote with:

- w the Gauss word;

- wj, © = 1,2, ... the subword of the Gauss word;

- A, B, C, ... the crossings.

Then, applying or removing Reidemaister moves have the following effects:
(1) Q;-move

The set of signs: A positive or negative Q)1-move on an arc, adds or removes
a negative or positive crossing.

Gauss word wiwy > wy £ A F Awy

(2) Qo-move
There are two cases of Gauss word which depend on the orientation of the
arcs that take part in the Qo-move.
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o s Wo W3 Wo Ws

o

(0] 9 wy Wy

un

Gauss word wiwaws <+ wy; = A+ Bwy F AF Bws

o Wy o Wy Wy 9

o 5
K o

Wy w3 Wy W3 w w3

Gauss word  wywaws <> wy = A & Bwy F B F Aws

The set of signs: Qa-move adds or removes two consecutive opposing signs.

(3) Q23-move
There are different cases of Gauss word which depend on the orientation of
the arcs and on the sign of crossings that take part in the Q3-move.

One case is:

LWy

wy

w3 wy w3 Wy

Gauss word
wl—A—Bw2+C’+Aw3—C’+Bw4<—>w1—A—Bw2+B+Cw3—I—A—C’w4

The set of signs: Ql3-move reorders the set of signs.
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KNOTOID DIAGRAMS IN R?

When performing Reidemeister moves on an extended oriented Gauss code,
one must also take into account how the third part of the code is affected by
the applied () -move; in the case when the arcs involved in the move bound
the outer region.

(1) Q;-move creates or removes a crossing and so divides an arc into three
subarcs or unites them into a single arc. After the move the third part of the
Gauss code can be:

e The kink that is introduced by the ;-move doesn’t touch the outer
region (in yellow on the figure) and so the third part, after renumbering

the arcs, becomes:
a+2
d a+1
)a

ey Qg > G QF 2,

e The kink touches the outer region or an arc that contains an endpoint
is involved and so the third part becomes:

a+2

A -— 5 a+l or a D a+l
a da

vy Gy oo > a,a+ 1 a4+ 2,

[ a+2

(2) Qo-move creates or removes two crossings and so divides each of the two
arcs into three subarcs or unites them into the initial two arcs.

Observation

It may happen that when applying the Qs -move two different regions are
created, that both can be chosen as the outer region of the knotoid diagram.
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Example of the two different choices for the outside region of a knotoid
diagram after an Qs-move

The original labels of the arcs following arc a are shifted by 2 and the arcs
following arc b are shifted by additional +2.

For example, assume that the third part of a Gauss code contains the arcs
a b c, with a < b < ¢, and that we apply an (2;-move between arcs a and
b. The new arcs a + 1 and a + 2 shift the labels of both of the arcs b and
¢ by 2. The Qs-move splits arc b into three subarcs with labels b+ 2, b+ 3
and b + 4 then the label of ¢ is shifted once more by 2 and therefore the
third part of the Gauss code after the application of an €2;-move becomes:
a,a+1,a+2,b+2,0+3,0+4,c+ 4.

After the Q2o-move we have the following cases:

e Both arcs touch the outer region.

— If the arcs are parallel we have the following two choices:
Yellow outer region ...,a,b,... <> ...,a,b+ 2, ...
Pink outer region ...,a,b,... <> ...,a +2,b+ 4, ...

a+2 b+4
'> ( = 'bbaﬂ
AN
a b

a b+2

— If the arcs are antiparallel we have the following two choices:
Yellow outer region ...,a,b,... <> ...,a,b+4, ...
Pink outer region ...,a,b,... <> ...,a +2,b+ 2, ...
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a+? b+2
'> < b+3( a

e Both arcs touch the outer region and one of the arcs contains
an endpoint

+1
b+4

— If the arcs are parallel we have the following two choices:
Yellow outer region ...,a,b,... <> ...,a,a +2,b+ 2,0+ 3, ...
Pink outer region ...,a,b,... <> ...,a+2,b+4

a+? b+2
'> < b+3( a+1
b+4

— If the arcs are antiparallel we have the following two choices:
Yellow outer region ...,a,b,... <> ...,a,a+2,b+3,b+4, ...
Pink outer region ...,a,b,... <> ...,a + 2,0+ 2, ...

a+? b+2

> < b+3( a+1
b+4

e Both arcs touch the outer region and both contain endpoints

— If the arcs are parallel we have the following two choices:
Yellow outer region ...,a,b,... <> ...,a,a +2,b+ 2,0+ 3, ...
Pink outer region ...,a,b,... <> ...,a+1,a+ 2,0+ 2,0+ 4

a+2 b+4
> { bb a+1
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— If the arcs are antiparallel we have the following two choices:
Yellow outer region ..., a, b, ... <> ...,a,a+1,a+2,b+2,b+3,b+4, ...
Pink outer region ...,a,b,... <> ...,a +2,b+ 2, ...

a+2 b+2
V4
- - b+3( a+1
a b a \b+4
e Only one arc touches the outer region
a+2 b+4 a+2 b+2
A -~
b+3 ( a+rl «— « b+3 ( a+1
a \b+2 a b a \‘b+4

vy @by > a, a4+ 2,043, ..

(3) 23-move involves three arcs of the diagram that form a triangular
region and let aq, as, ag be those arcs. Opposite from an arc a; i =1, 2, 3
and adjacent to the intersection of the other two arcs, lies a local region of
the diagram, r; ;i =1, 2, 3.

If r; C outer region < outer region +a;.

If r; C outer region and a; € outer region <> outer region —a;

Definition 2.6.1. A crossing of a knotoid diagram is called odd if there is an
odd number of labels between the two appearances of the crossing otherwise
it is called an even crossing.
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Ezample 1:

)

Gausscode: 12 —3 —4 —15 —64 —2 =563 ++++++tttrt+t
The crossings 1,4,5 and 6 of the knotoid diagram are odd, and the crossings
2,3 are even.

Definition 2.6.2. Gauss code of a knotoid diagram is said to be evenly
intersticed if there is an even number of labels between two appearances of
any label.

Theorem 6. The Gauss code of a knotoid diagram in S? is evenly intersticed
if and only if it is a knot-type knotoid diagram.

Proof. The loop at a crossing of a knotoid diagram in S? is defined to be the
path obtained by traversing the knotoid diagram starting and ending at that
crossing. There is a loop at each crossing of a knotoid diagram.

Let K be a proper knotoid diagram then one of the endpoints is located
inside at least one loop, i.e. endpoints of K are separated by at least one
loop at a crossing of K.

All the strands entering the loop except the one that is adjacent to the
endpoint, leave the loop and each such strand contributes with a pair of labels
to the Gauss code of the diagram. We consider the crossing "1" that forms
the loop, the Gauss code of K along this loopis: ...1257 —5 —7 —1..., where
2 represents the crossing of the strand adjacent to the endpoint with the loop,
and 5, —5 and 7, —7 for the pairs of crossings created by the transversally
intersecting strands which enter and leave the loop. We can see that between
the two appearances of the label 1, we have an odd number of labels (five
labels) so that the Gauss code of K is not evenly-intersticed.

For a knot-type diagram K, we can assume that the tail and head lie in
the outermost region of the diagram so that none of the loops at crossings
encloses them. All the strands passing through any of the loops of K enter
and leave the loop so that they contribute with a pair of labels to the Gauss
code of K. This shows that each crossing is even, i.e. the Gauss code of K
is evenly-intersticed. O
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Definition 2.6.3. Gauss codes have a diagrammatic representation called
chord diagram.

We consider a segment which is oriented from left to right, each label in the
Gauss code is represented by 2 points on this segment.

The points are labeled as the corresponding labels in the code.

A signed and oriented chord connects each pair of the labeled points. The
orientation of a chord heads from the overcrossing to the undercrossing.
Starting from the tail, during a travel along the knotoid diagram K, if the
first time that we meet a crossing is an overcrossing then the arrow of the
corresponding chord heads towards the second appearance of the label.

The sign of the chord is the sign of the associated crossing.

For flat knotoid diagrams, we have the notion of right and left at each flat
crossing. If we meet for the fist time a crossing that goes to the right then
the head of the arrow on the corresponding chord heads towards the first
appearance of the label. We call such a diagram with chords that represents
the Gauss code of a knotoid diagram the chord diagram of the knotoid dia-
gram.

Each knotoid diagram has a unique Gauss code and chord diagram.

Example 2: Recall the Example 1
The chord diagram of Gauss code
12 -3 -4 —-15—-64 —2 —563 ++++++++++++

1234156425¢63

ENCEs s

20



Chapter 3

Invariants of knotoids

Given two knotoid diagrams K and K’, if K and K’ are equivalent then they
have the same invariants. The invariants can be numbers, polynomial...

In this chapter we will consider polynomial invariants, in particular the Jones
polynomial and the arrow polynomial for spherical knotoids, while for planar
knotoids we will consider the Turaev loop bracket polynomial and the loop
arrow polynomial. We will see the definitions of height of knotoids, of the
crossing number and their relation.

Knotoids invariants can be used to classify knotoids, in particular in Ap-
pendix B it is possible to find a table (taken from [5]) of all distinct knotoids
in the sphere up to four crossings.

3.1 Invariants of spherical knotoids

3.1.1 The Jones polynomial

Before giving a definition of the Jones polynomial it is necessary to introduce
some preliminary notions.

Definition 3.1.1. Let K C S? be a knotoid diagram (not-oriented).
A state s of a knotoid diagram is a simple curve in S? obtained by smooth-
ing each crossing in one of two different ways in Figure 3.1.

We have the crossing ¢; and it determines four angles. We orient each angle
starting from the arc that passes above to arrive at the arc that passes below.
If we cut clockwise angles (horizontally cutting) we get the negative smooth-
ing and the sign of this smoothing of the i-th crossing ¢; is o;(s) = —1

If we cut counterclockwise angles (vertically cutting) we get the positive
smoothing and the sign of this smoothing of the i-th crossing ¢; is 0;(s) = +1

o1



X

Negative smoothing Positive smoothing

Figure 3.1: Smoothings of the crossing ¢;

Definition 3.1.2. Let S(K) be the set of all states of K and let C(K) be
the crossing number of the knotoid diagram.
For every state s € S(K) the sum of signs of all smoothings of state s is

o(s) =o1(s) + ... + o) (s)

Remark 3.1.1. The state depends on the choice made at each crossing,
therefore the cardinality of the set of all states is |S(D)| = 2¢(),

Definition 3.1.3. Once smoothed all crossings of the knotoid diagram we
get a (possibly empty) finite set of loops and an arc. Then, we put

p(s) = number of components of the state s (once smoothed all crossings).

Definition 3.1.4. BRACKET POLYNOMIAL
Let K C S? be a knotoid diagram (not-oriented).
The bracket polynomial is given by:

<K> _ Z Aa(s)(_AQ . A—Z)p(s)—l c Z[Ail]
seS(K)

The orientation is not used to calculate this polynomial.

Rules to construct the polynomial:
1. (K =KUS") = (—A% — A2)(K)

Proof.

Given K = K U S* then S(K) < S(K) and o(8) = o(s) because the
number of crossings is the same, while the number of components is
different p(8) = p(s) + 1 (there is an other component: a circle S* ).

<[A(> _ Z Aa(§)(_A2 _ AfQ)p(§)fl _
3€S(K)
_ Z Ao(s)(_A2 - A72)p(s)+171 _ (—A2 _ A72><K> []

seS(K)
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Proof.

Let K, Ky, K be three identical diagrams that differ only in the
crossing ¢;.

States of K is the disjoint union of states where ¢; is smoothed as in
K, and states where ¢; is smoothed as in K.

S(K) = So(K) U Su(K)

7 I
S(Ko) S(Kx)

Considering s € Sy(K) and sy € S(Kj) we obtain o(s) = o(sg) + 1
(+1 because the crossing ¢; is been smoothed in positive way) and
p(s) = p(so)-

Considering s € S (K) and s € S(K) we obtain o(s) = 0(ss) — 1
(-1 because the crossing ¢; is been smoothed in negative way) and
p(s) = p(5s0)-

<K> _ Z Aa(s)(_AQ . A—Q)p(s)—l _

s€S(K)
— Z AT (A2 — A72)P1 Z AT (— A2 — A72)P)1 =
5€S0(K) 5€8500 (K)
_ Z ATGOFL (A2 A= 2ypls0) -1 Z Aol) =1 (L A2 A=2)plo)—1 =
s0€S(Ko) S00€S(Koo)
) Z ATG0) (L A2 — A2)pls0)—1 4 g1 Z Ao() (L A2 A=2)plo) =1 =
s0€S(Ko) S00€S(Koo)

= A(Ky) + AHKL)
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4. Rotating the crossing ¢; (in the case 2.) 90 degree we obtain

(K) = A(Kp) + A7 (Kw)

Proposition 1. The bracket polynomial is invariant under the second and
the third Reidemeister moves but not under the first Reidemeister move.

Proof.
Let K and K’ be two diagrams related by an Q;-move.

”‘/-'__—\\‘\\ F—— -

Ki=KuS! K_ =K

9 S0

(K'y = A(K() + AN (KL ) = A(KUSY) + AH(K) =
= A(—A? - A)(K)+ A YK) =
=(—A3— A"+ AH(K) = —A3(K)
Similarly if we have the other crossing:

K O K'
/'/——\\-\ = e —_

(K') = —A7X(K)

Let K and K’ be two diagrams related by an Qs-move.

K . K’
~— 0, N
S 7
S~ —
’,/\\ /7 \\
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(K') = A(Kp) + A7H(KL )=

e}

o

= A(A(KG) + A7 (Kfoo)) + ATHA(K L) + ATHKLL)) =

CHEGTEENC IS
T they are equal, we call them K” )
= AX(K") + (Kioo)) + (Klg) + A(K")) =

= AK") + (K" = K"USY) + (K) + A(K")) =
= (A2 + A7) (K") + (=A% = AZ)(K") + (K) = (K)

Let K and K’ be two diagrams related by an Q3-move.

K~ Q >x_ 7K
/\ \/
; A

\/ >(

We can see that (K) = (K. ) up to isotopy because they have same cross-
ings but displaced.

We have seen that the bracket polynomial is invariant by (2s-move. Appling
the Qo-move we have (Kj) = (KJ).
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So we get (K) = (K'). O

The bracket polynomial is not an invariant of knotoid diagram because
it is not invariant by all Reidemeister moves so it is necessary to apply a
correction factor in order to obtain an invariant: the Jones polynomial.

In order to establish invariance under the first move, we choose an orien-
tation for the given knotoid diagram. The crossings in an oriented diagram
can be positive +1 or negative —1:

LX

The correction factor is given by the sum of signs of all crossing of oriented
knotoid diagram K. This sum is called writhe of K and denoted by wr(K).
The first Reidemeister move:

K 0, K’\—Q
AT A (KY) = wi(K) — 1
K 0, K’
T wr(K') = wr(K)+1
The second Reidemeister move generates two new crossings that are opposite
(independently of the orientation choice) then the writhe does not change.

The third Reidemeister move only changes the positions of crossings, then
the writhe does not change.

Definition 3.1.5. THE JONES POLYNOMIAL
Let K be an oriented knotoid diagram in S2.
The Jones polynomial is given by:

Ji(4) = (~A7)NE) € Z[A*]
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where (K) is bracket polynomial.

The correction factor (—A=3)*"5) ensures that the Jones polynomial is in-

variant under first Reidemeister move:

K 0 K’\p
e fa

T (A) = (A7) EN|KY) = (A7) (AT (| K) =
= (—ATMIOR(K]) = (A E(K]) = Jx(A)

K 0

A !
-~ hy ——

Tro(A) = (A2 = (A7)0 A (K] =
= (—ATIOS) (| K]) = (=AM (K]) = Ti(A)

I+

Properties of Jones polynomial:
1. Jg(A) is invariant under all Reidemeister moves.

2. K trivial knotoid diagram = Jx(A) = (=A% — A=2)nFK)—1

where n(K) is the number of components

of knotoid diagram K.

Proof.

Let K be a knotoid diagramm with n(K) components.

k N O O

n(K)

This diagram has only one state because it’s a diagram without cross-

ings wr(K)=0o0(s )—0

Z Aa(s A ) p(s)—1 A0< A2_A—2>n(K)—1

seS(K)

Jr(A) = (mAB3)WENK) = (=A3)NK) = (—A2 — A-2)nK)-1

]

3. If K is connected Ji(A) it does not depend on the orientation because it

only has an orientation and the opposite one.
J_k(A) = Jg(A)

— K is the knotoid diagram with inverted orientation.
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4. Joir(r)(A) = Jx(A™!) where mir(K) is the mirror reflection of the
knotoid diagram, it is the same diagram with inverted crossings.
Erample

K mir(A) sym(K)

wr(K) = —2 wr(mir(K)) =+2  wr(sym(K)) = —wr(K)
because each crossing changes sign, then there is an exchange between
Ky and K, in the formula (K) = A(Ky) + A1 (K) but it is like to
exchange A and A~L.
The bracket polynomial of mir(K’) valuated in A corresponds to bracket
polynomial of K valuated in A~'. (| mir(K)[)(A4) = (|K[)(A™}).

Remark 3.1.2. The knotoid diagram is symmetric = Jx(A) = J(A™1) =
Jmir(K) (A)
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3.1.2 The arrow polynomial

To give the definition of the arrow polynomial, it is necessary to give a
definition of bracket polynomial for oriented states.

Definition 3.1.6. BRACKET POLYNOMIAL for oriented states
Rules to construct the polynomial:

M.Dﬂ:ADG+A4Dﬂ
1b. N AlDﬂ+A E/A]

, 04
[~
— 1 2 i-1 1
AAAA |= L
4, —

Each oriented state is composed by a finite number of closed components
and an arc with endpoints, both can contain consecutive cusps that we get
by construction of the polynomial, in particular by the rules 1a. and 1b..
Each cusp has two arcs either going into the cusp or going out from the cusp.
We call "inside of the cusp" the part of the acute angle and "outside of the
cusp" the part of the obtuse angle.

Rules which reduce the number of cusps in a state:

- two consecutive cusps on a closed component can be canceled if they have
insides in the same region;

(c1)

O-O-0

- two consecutive cusps which have insides on the same side of the arc can
be canceled;
(c2)

M\—\f\\/
/\/\‘}éf\\/.
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Let K C S? be an oriented knotoid diagram.
The bracket polynomial for oriented state is given by:

K] = Z AT (A2 = AT € ZIAFY Ly, Lo, ]
seS(K)

where: S(K) is the set of states of knotoid diagram, o(s) is the sum of signs
of all smoothings of state s, p(s) is the number of components of the state s
(once smoothed all crossings) and L;) is the variable assigned to each arc
of a state with i(s) surviving cusps.

Proposition 2. The bracket polynomial is invariant under the second and
the third Reidemeister moves but not under the first Reidemeister move.

Proof. Similar proof to that of the Proposition 77. n

Definition 3.1.7. THE ARROW POLYNOMIAL
Let K be an oriented knotoid diagram in S2.
The arrow polynomial is given by:

A(K) = (A3 H[K] € Z[A*, Ly, Ly, ...]

where [K] is bracket polynomial for oriented states.

The arrow polynomial is invariant under Reidemeister moves. (The correc-
tion factor (—A~3)""%) ensures that the arrow polynomial is invariant under
first Reidemeister move.)

Remark 3.1.3. The arrow polynomial gives nontrivial information about
the height (definition 2.2.4). See chapter 3.7.
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3.2 Invariants for planar knotoids

3.2.1 The Turaev loop bracket polynomial

The Turaev loop bracket polynomial is an extenction of Jones polynomial for
the case of planar knotoids. To give a definition of Turaev polynomial, it is
necessary to give a definition of loop bracket polynomial.

Definition 3.2.1. LOOP BRACKET POLYNOMIAL

When we have studied the bracket polynomial we have seen that when all
crossings of the knotoid diagram are smoothed we get a finite number of
disjoint loops and an arc.

Rules to construct the polynomial:

1. (K = KUSY, = (—A%— A 2)(K),
2. (K), = A(Ko) + A" (K)o

3. Rotating the crossing ¢; (in the case 2.) 90 degree we obtain
(K) = A(Ko) + A7 (Kw)

— P

0 where 5 > 0 is the number of copies of loops

that contain the arc.

If the arc remains inside a circle in S% we can always take it out by moving
an arc of circle around the surface of the sphere but if we work in R? with
planar knotoids, we cannot do this and it is necessary to keep track of this
information.

For this reason we add an other variable v to the bracket polynomial that
indicates the situation in which the segment is inside a finite number of
circles.

Let K C R? be a knotoid diagram (not-oriented).

The loop bracket polynomial is given by:
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<K>o _ Z Aa(s)(_A2 _ A—Q)a(s)vﬁ(s) c Z[Ail, ’U]
seS(K)

where: S(K) is the set of states of knotoid diagram, o(s) is the sum of signs
of all smoothings of state s, a(s) is the number of circular components which
do not contain the arc, v is the variable assigned to the situation in which
the arc is inside a finite number of loops (3(s) is the number of closed com-
ponents that contain the arc). a(s) + 5(s) = p(s) — 1

The orientation is not used to calculate this polynomial.

Definition 3.2.2. THE TURAEV LOOP BACKET POLYNOMIAL
Let K be an oriented knotoid diagram in R2.
The Turaev loop bracket polynomial is given by:

Ji(A,v) = (mA3)YTEVK) e Z[AF! 0]

where (K), is loop bracket polynomial.

The Turaev loop bracket polynomial is invariant under Reidemeister moves.
(The correction factor (—A~3)"*¥) ensures that the Turaev loop bracket
polynomial is invariant under first Reidemeister move.)

3.2.2 The loop arrow polynomial

The loop arrow polynomial is an extenction of arrow polynomial for the
case of planar knotoids. To give a definition of loop arrow polynomial, it is
necessary to give a definition of loop bracket polynomial for oriented states.

Definition 3.2.3.

LOOP BRACKET POLYNOMIAL for oriented states

When we smooth all crossings we can have these situations:

- an arc which remains inside of a finite number of circles (like in the loop
bracket polynomial),

- there are two type of zig-zag segments, they are formed by a finite number
of surviving cusps (the rules to remove cusps are the same seen in the bracket
polynomial for oriented states)

- atype 1 (type 2) zig-zag segment remains inside of a finite number of circles.
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Rules to construct the polynomial:

o, A=allra X,
1b. N«TA_IDG?AE/'QO

. [KuO= -2 - K]

-
3. o
r1 2 =11
ANAAA|=m
4a. — o
— 1 2 -1 7
o AT =

5a.

5b.

Let K C R? be an oriented knotoid diagram.
The loop bracket polynomial for oriented states is given by:

o — s) O(s
[Klo= Y A0 (=42 = A7)0 Dm0 )
s€S(K)
€ Z[Aila U, My, M2, ... W1, W2y ..., P1, P25 -5 415 42, ]
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where: S(K) is the set of states of knotoid diagram;

o(s) is the sum of signs of all smoothings of state s; a(s) is the number of
circular components which do not contain the arc;

v is the variable assigned to the situation in which the arc is inside a finite
number of loops (8(s) is the number of closed components that contain the
arc);

M;(s) is the variable assigned to each arc of a state with i(s) surviving cusps
that create the type 1 zig-zag;

wj(s) is the variable assigned to each arc of a state with j(s) surviving cusps
that create the type 2 zig-zag;

Di(s) is the variable assigned to the situation in which the arc of a state with
[(s) surviving cusps (that create the type 1 zig-zag) is inside a finite number
of loops (y(s) is the number of closed components that contain the arc);
qn(s) is the variable assigned to the situation in which the arc of a state with
h(s) surviving cusps (that create the type 2 zig-zag) is inside a finite number
of loops (4(s) is the number of closed components that contain the arc).

Definition 3.2.4. THE LOOP ARROW POLYNOMIAL
Let K be an oriented knotoid diagram in R2.
The loop arrow polynomial is given by:

A(K) = (_A_3)WY(K)[K]O € Z[Aila v, M1, My, ... W1, W2, ..., P1, P2, ---, 41, 42, ]

where [K], is loop bracket polynomial for oriented states.

The loop arrow polynomial is invariant under Reidemeister moves.

(The correction factor (—A~3)""5) ensures that the loop arrow polynomial
is invariant under first Reidemeister move.)

3.3 The affine index polynomial

Given a knotoid diagram K, the affine index polynomial of knotoid, is
based on an integer labeling assigned to flat knotoid diagram (definition
2.5.1) of K in the following way:
- the labeling of each arc of knotoid diagram of K begins with the first arc
which connects the tail and the first flat crossing,
- at each crossing, the labels of the arcs change by one; if the incoming arc
labeled by a € Z crosses the crossing towards left then the next arc is labeled
by a + 1, if the incoming arc crosses the crossing towards right then it is
labeled by a — 1.

Let ¢ be a classical crossing of K, we define two numbers at c resulting
by the labeling:
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b+1 a-—1

a b

Figure 3.2: Integer labeling at a flat crossing

w4 (c) = a— (b+ 1) positive weight

w_(c) =b— (a — 1) negative weight

where a and b are the labels for the left and the right incoming arcs of the
corresponding flat crossing c, respectively.

The weight of c is defined as

~Jwy(e); if the sign of ¢ is a positive crossing
wi(c) =

w_(c); if the sign of ¢ is a negative crossing

Definition 3.3.1. THE AFFINE INDEX POLYNOMIAL
Let K be an oriented knotoid diagram in S?. The affine index polynomial
of classical knotoid diagram K is defined by:

P(A) = sgn(c)(A"< — 1)

where the sum is taken over all classical crossings of a diagram K and sgn(c)
is the sign of c.

The affine index polynomial is invariant under Reidemeister moves, it can
be seen that:

);-move adds a crossing with zero weight

—_

a a

Qy-move adds/removes two crossings with opposite signs but with same
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Q3-move does not change weights or signs of the three crossings in the move

E P L

pattern x*y*z

Remark 3.3.1. When we have given the definition 2.2.4 of height of a kno-
toid diagram K C S2%, we have seen that a knotoid in S? is of knot-type
if and only if its height is zero or equivalently a knotoid in S? has nonzero
height if and only it is a proper knotoid.

1) Knot-type knotoids have trivial affine index polynomial.

2) Proper knotoids may have nonzero affine index polynomial.

=1If a given knotoid diagram has nonzero affine index polynomial, then the
knotoid diagram represents a proper knotoid. It is often hard to compute
the height with an attempt of direct computation, for we should take into
account all the equivalent knotoid diagrams.

The affine index polynomial provides the estimation for the height that we
seen in the subchapter 3.7 .
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3.4 Example: The invariant polynomials of the
spherical knotoid 3;

We consider the spherical knotoid 31: l\

We consider the not-oriented knotoid diagram 3; and the computation of
bracket polynomial is:

<31>—A<(£\>>+A1<§C\>> .
_ A[A(O[QHA%@JJFA1[A<§L§>>+Al<@>} _

(using 1

- r% e Pyl

= A[A(—A% - A~ )]+ AHA(-A3) + A1
=[(-A"=1)(- A?’) A“] [ A5 A‘5]:
= AT+ AP 243 — AP = AT - A3~ AP

Now we consider the orientation of 3; and the computation of Jones poly-
nomial is:

wr(3;) = —3

J31 (A) — (—A )Wr(31)<31> ( A73)73(A7 — A3 — AfS) — _Al6 + Al2 + A4

We consider the oriented knotoid diagram 3; and the computation of bracket
polynomial for oriented states is:
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Q
@
5:3
%

(simplifying with (c1), (c2) and using 2.)

=A3(-A2 - A2+ AT+ AT G A(-A2 - A2+ AT A(—A? - A7) +
+A(—A% — A7) + A3(—A2 - A7) (A2 - A7?) =

= AT AP+ AT AT A AT AT A AT A AT
+(=A° — A)(—A? - A7%) =

=-AP-3A3 AT+ AT+ A A+ AT = AT AT A3

The computation of Arrow polynomial is:

wr(3;) = —3

A(Sl) — (_A—3>wr(31)[31] — _A9(A7 . A3 . A_5) — —A16 + A12 + A4
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3.5 Example: The invariant polynomials of the
planar knotoid 33

6

We consider the planar knotoid 33:

We consider the not-oriented knotoid diagram 33 and the computation of
loop bracket polynomial is:

(33)0 = A( @% +A7Y @ )o =

- Al (e |+

+A AN - A%

= A2(A+ A Y+ Av+ Ao — A3+ A2 + A3 =

=A+ A+ Av+ Ao - A+ A2+ A3y =

=A+Av+ Ao+ A2+ A3
Now we consider the orientation of 33 and the computation of Turaev loop
bracket polynomial is:
wr(33) = —1
Jay (A, 0) = (—A73)"B3)(35), = —A3(A + Av+ A+ A% 4+ A~%) =

= —A* — A% — A%y — A%? — v
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We consider the oriented knotoid diagram 3; and the computation of loop

bracket polynomial for oriented states is:

RS (GRIERC;
=t |(Gh ) 4 @%
e [ ]G] -
-G ()

(G o[G0
S (CEIE (GRS

(simplifying with (c1), (c2) and using 2.)

Q

= AW+ A3p 1+ A+ A7 my + Ap + AT pi+ ABmy + A(— A2 — A7 Hmy =
=AW+ ABp + A+ A7 imy + Ap + A i+ A3y — A3y — A7 imy =
=AW+ A3p + A+ Apy + A71p?
Now we consider the orientation of 33 and the computation of loop arrow
bracket polynomial is:
VAVI"(33) =-1
A(35) = (AP O[3y, = (—A%)(A V0 + A%py + A Apy + A1)
= —A% —p — AT = A'p, — A%p}
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3.6 Examples of calculation of the affine index
polynomial

We consider the spherical knotoid 3;:
Y
%d
where a,b,c are crossings: sng(a)= —1, sng(b)= —1, sng(d)= —1
We consider the flat knotoid of 3; with integer labels:

(AN

0 0

0

We compute the weight of crossings:
ws, (a) =w_(a) =—1—-(-1)=0
ws, (b)) =w_(b)=—-1—(=1)=0

ws,(d) =w_(d)=—-1—-(=1)=0

The affine index polynomial is given by:

Pad)= Y saa(e)Am© 1) =

c€{crossings of 31}

— (A~ 1) — (A0 —1) — (A°— 1) =0

We consider the spherical knotoid 3,:

{d
where a,b,c are crossings: sng(a)= +1, sng(b)= +1, sng(d)= —1
We consider the flat knotoid of 3, with integer labels:
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We compute the weight of crossings:
ws,(a) =wy(a)=2-1=1

ws,(b) =wy(b)=1—2=—1

ws,(d) =w_(d) =0

The affine index polynomial is given by:

P, (A) = Z sgn(c) (A=) — 1) =

c€{crossings of 32}

(A1) (AT 1) (A1) = A1+ AT 1= Af A2
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3.7 Height of spherical knotoids

Definition 3.7.1. The height of a knotoid diagram K C S? is the minimum
number of crossings that a shortcut creates in the underpass closure. The
height of a knotoid k € K(S?) is the minimum of the heights of the diagrams
of k and it is denoted by h(k) (i.e the height of a knotoid K in S? is defined
as the minimum of the heights, taken over all equivalent classical knotoid
diagrams to K).

A knotoid in S? is of knot-type if and only if its height is zero, or equivalently
a knotoid in S? has nonzero height if and only it is a proper knotoid.

3.7.1 The affine index polynomial and the height of
spherical knotoids

Theorem 7. Let k be a knotoid in S?. The height of k is greater than or
equal to the marimum degree of the affine index polynomaial of k.

Proof. Let K be a knotoid diagram representing k. We label the knotoid
diagram of K with respect to the labeling rule given in figure 3.2.

Each crossing of a knotoid diagram determines a unique loop (the continous
path obtained by traversing the diagram starting and ending at that cross-
ing according to the orientation of the diagram). The loop determined by a
crossing C is called the loop at the crossing C' and we indicate it with [(C).
The algebraic intersection number of the loop at a crossing C' with a strand
of K is defined to be the total number of times that the strand intersects
the loop from right to left minus the total number of times that the strand
intersects the loop from left to right.

The algebraic intersection number of a loop at a crossing C, with other
strands of the diagram is equal to either the positive weight or the negative
weight of that crossing, depending to the orientation of the loop.

a a+l a-1

a a-1 a+l a

Figure 3.3: Two possible types of loops at the crossing C', one is oriented in
the counterclockwise and the other in the clockwise direction.
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The algebraic intersection numbers of the loop at C' with the piece of
strand shown in the figure 3.3, are +1 and —1, respectively. We can see
that w_(C) = +1 for the first loop that is oriented counterclockwise and
w4 (C) = —1 for the second loop that is oriented clockwise. If the sum of
the algebraic intersection numbers of the loop [(C') at the crossing C' with
intersecting strands is equal to n, then n is equal to either w_(C) or w(C),
depending on the orientation of the loop [(C').

Let m be the maximum degree of the affine index polynomial of k. Then
there exists a crossing of K with weight m. In fact, m is the maximal weight
among the weights of crossings of K. Let C be one of the crossings of K
with weight m and [( C be the loop at C.

The way to smooth a Classmal Crossmg of a knotoid diagram according to the

> e
orientation is

Each crossing which are met twice Whlle traversing along the loop [ (C), are
all smoothed accordingly to the orientation. This implies that each self-
intersection of the loop Z(C’) is smoothed. Smoothing the self-intersections
of the loop I(C) results in oriented embedded circles (in S2) and an oriented
arc containing the tail and the head of K.

The arc may intersect the resulting circles and itself. The algebraic intersec-
tion number of one of the resulting circles with the arc is defined as the total
times of the segment intersects the circle from left to right minus the total
times of the segment intersects the circle from right to left. Let Ix denote
the sum of the algebraic intersection numbers of the resulting circles with the
arc. None of the crossings of K that contributes non-trivially to the total
algebraic intersection number, is smoothed since such a crossing is met only
once. As a result, Ik is equal to the sum of algebraic intersection numbers
of the loop at the crossing C' with the strands intersecting ! (C’) This shows
that the sum of algebraic intersection numbers of the circles with the arc is
equal to either w_(C) or w,(C). Thus, the absolute value of I is m. On
the other hand, it is easy to verify that the number |I;| can be at most as
large as the number of the circles that are enclosing the endpoints (the tail
or the head). In particular, |I;| is equal to the number of the circles if all
intersections are positive. Thus we have that m is at most the number of
circles enclosing the endpoints.

The height of the diagram K is at least as large as the number of the circles
enclosing the endpoints, by the Jordan curve theorem. Then h(K) > m. So
m turns out to be the maximum degree of the affine index polynomial of any
classical knotoid diagram equivalent to K. This implies that there is a cross-
ing with weight m in each representative knotoid diagram of k. Applying the

74



same procedure explained above applied to the loops of the crossings with
weight m in each representative diagram gives us the inequality, h(k) > m
for any representative classical diagram of k. O

Ezample:

(] 1
)] 2
(2

(D]-1
(Dl 1
@ -1

Now we see loop of the crossing D and resulting circles and the arc:

Dl mO|lO]|®m

?

)

The height of knotoid is the minimum of all heights of diagrams, one conse-
quence of the previous theorem is that we can get the minimum of all height
of diagrams by means of a spiral diagram with positive crossings.
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The knotoids each represented by a diagram overlying the flat diagrams
with positive crossings:
Ky K K

C
1
0
2
w_

B

wy

Bl -1 | +1
Cl+1 -1

mio|O| @
|
L
+
-

}
M
|
-
Q|| MmO M@
i
+

Figure 3.4: Example

We have the following affine index polynomials:

P (A)=A+ A1 -2

Pr,(A)=A?+ A+ AP+ A%2 -4

Pr,(A) = A3+ A2+ A+ A1+ A2+ A3 —6.

The heights of the given diagrams are 1, 2 and 3, respectively by the previous
theorem.

Generalization: The affine index polynomial of a classical knotoid repre-
sented by an n-fold spiral knotoid diagram has a term of the form A™ + A™"
if all crossings of the diagram are positive. The maximum degree of the affine
index polynomial is n and the height of the spiral diagram is n. By the pre-
vious theorem we conclude that the height of the knotoid is n. This shows
that we have an infinite set of knotoids whose height is given by the affine
index polynomial.

If we consider the flat knotoid K3 with C, D, E negative crossings and B,
F, G positive crossings, it has trivial affine index polynomials.

P, (A)=+(A3-1)—(A2-1)—(A-1)—(A3-1)+(A2-1D)+(A-1)=0
There are examples of proper knotoids with trivial affine index polynomial
so that the affine index polynomial gives trivial lower bound for the height
of knotoids.

So the polynomial gives trivial information about the height of the knotoid
represented. An other knotoid invariant that gives a non trivial information
about the height is the arrow polynomial. Using the arrow polynomial we
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can see that K3 has height 3.

3.7.2 The arrow polynomial and the height of spherical
knotoids

The arrow polynomial can be used for estimating the height of a knotoid in
S2.

Remark 3.7.1. The arrow polynomial of virtual knot is computed in a simi-
lar way of the arrow polynomial of classical knotoid (see the subsection 3.1.2)
but when we calculate the arrow polynomial of virtual knot we have the vari-
ables K; that are assigned to the closed components with surviving cusps (see
articles [3]and [4] of references).

In other words, a closed component with two cusps forming a zig-zag con-
tributes as K; to the polynomial. In general, a closed component with zig-
zags formed by 2¢ alternating cusps, contributes as a variable, K; to the
arrow polynomial.

O - V) s

VANV \\\ /

\ 4 \ \ o /!

Definition 3.7.2. A closed component with 2 irreducible cusps contributes
as a K;-variable to the arrow polynomial. The arrow polynomial of virtual
knot k* is given by:

AGF) = (— AP ] = (A0 37 AT0( A2 AT
seS(K)

where: S(K) is the set of states of virtual knot diagram, o(s) is the sum of
signs of all smoothings of state s, p(s) is the number of components of the
state s (once smoothed all crossings) and K is the variable assigned to
each closed component of a state with i(s) surviving cusps.

Notice that the addends of the arrow polynomial have the form: A™ K/ K7*...K]".
The K-degree of the addend is:

’il le—f-—l—Zann
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The maximum K-degree of the arrow polynomial is the maximum K-degree
of the addends.

Example:

k,*

A(k*> - A2K3 + 1 - A_2K1K2 - A2K1K2 + A_2K1

K-degree of the 1° addend is 3 because 3 x 1 = 3.
K-degree of the 2° addend is 0 because there is not K;.
K-degree of the 3° addend is 3 because 1 x 1 +2 x 1 = 3.
K-degree of the 4° addend is 3 because 1 x 1 +2 x 1 = 3.
K-degree of the 5° addend is 1 because 1 x 1 = 1.

So the maximum K-degree is 3.

(For other examples see the reference [16]).

Definition 3.7.3. The virtual crossing number of a virtual knot /link is the
minimum number of virtual crossings over all representative diagrams.

The problem of determining the virtual crossing number of a virtual knot
or link is a fundamental problem in virtual knot theory. We have the following
theorem:

Theorem 8. The virtual crossing number of a virtual knot/link is greater
than or equal to the mazimum K-degree of the arrow polynomial of that

virtual knot/link. (see references [2], [14] and [15])

Definition 3.7.4. In the arrow polynomial we have the variables L;(s) that
is assigned to each arc of a state with i(s) surviving cusps. The L-degree of
the arrow polynomial is the maximum of ¢ € N assigned to L;.) appearing
in the arrow polynomial.

Let K be a knotoid diagram in S2.
A closed component with 27 irreducible cusps contributes as a K;-variable to
the arrow polynomial.
Since circular components of an oriented state of knotoid are cusp-free, no
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K-variables occur in the arrow polynomial of a knotoid in S2.

However, closing the endpoints of a knotoid diagram via the virtual closure
map turns L;-variables into K;-variables that are assigned to the closed com-
ponents obtained via this closure.

Using this idea, we show that the L-degree of the arrow polynomial can be
used as a lower bound for the height of knotoids in S2.

So we have:

L — degree of A(k) < virtual crossing number of the virtual knot o(K) (<)

Ezxample: arrow polynomials of a knotoid and of its virtual closure
We compute the bracket polynomials for oriented states of a knotoid diagram

K' ()= 4O ()=

= A2 + L1 + L1 =+ AiZ(—AZ — A72)L1 =

=A2+ 24+ A(-A2-A?))L, =

=A*+(1-A"YL,

Closing the endpoints of a knotoid diagram K via the virtual closure map
we get a virtual knot v(K). Now we compute the bracket polynomials for
oriented states of virtual knot v(K).

(D= A+ 4 [ =
:A{A[ J 44| H+
e Y -
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=A2+ K + K +A?(-A2 - A?)K, =

=A?+ 24+ A (-A? - A?)K, =

= A2 + (1 _— A74>K1

So the arrow polynomials are:

A(K) = (—AZ) I [K] = (~A2[A2 4 (1 — A)L,] =
=AS[A2+ [, - AL = A+ ASL, — AL,

AB(K)) = (A=) [H(K)] = (— A=A + (1 — A K] =
=AS[A2+ K| — A K| = A1+ A K, — A71°K,;

The lower bound on the virtual crossing number is 1.

Theorem 9. The height of a knotoid K in S? is greater than or equal to the
L-degree of its arrow polynomial.

Proof. Let K be a classical knotoid diagram representing K. The height

of the knotoid diagram h(K) is equal to the number of virtual crossings of
17(f( ), in other words, the minimum number of virtual crossings obtained by
closing a classical knotoid diagram in virtual way is equal to the height of
that diagram. By () we get: L — degree of A(K) < h(K) .

The inequality above holds for any classical knotoid diagram equivalent to
K since the L-degree of the polynomial is invariant under the 2-moves.

So we have:
L — degree of A(K) < h(K)
where h(K) denotes the height of the knotoid K. O

Ezample: Using the arrow polynomial we can see that K3 (figure 3.4),

with C', D, E negative crossings and B, F', GG positive crossings, has height
3. The arrow polynomial of the knotoid:
AK) = 14+(—AP+A?PH AL AO) L +(—2471 24" +4) Ly +(— A0+ A+
A% + A% Lz. The L-degree of the arrow polynomial is 3 so by the previuous
theorem, the height of the knotoid K is at least 3. It is not difficult to see
that the height of the given diagram is also 3. Thus the height of the knotoid
K is 3.
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3.7.3 Alternating knots and alternating knotoids

Definition 3.7.5. Given D a knot diagram, the separator crossing is
defined: if we cut a diagram in the separator crossing in one of these two
ways we get a disconneted diagram.

X [eDde]
(o[>

Definition 3.7.6. Let D C R? be a knot diagram.

D is alternating knot diagram if and only under- and over-crossings al-
ternate along D. D is reduced alternating knot diagram if and only if
there are no if there are no separating crossings, i.e. D is not:

(@) (b)

OClE] [T
N ~—

(a)

v B

Note that, if we overturn A we can eliminate the crossing
If D is an alternating knot diagram, after the overturning the diagram is still
alternating. We can eliminate the crossing in between A and B by either
overturing A in the suitable sense or overturing B in the opposite one.

Definition 3.7.7. Let k* C R? alternating knot if and only if it admits
an alternating diagram.
If k* is a prime knot with ¢(k*) < 7 = k* is alternating knot.

Definition 3.7.8. If k* C R? alternating knot = there exists a reduced al-
ternating knot diagram D of k*.

(«<Tait conjecture)
(If the diagram is not "reduced" we can simplify it and each time the num-
ber of crossings decreases by one. This process ends and we get a reduced
alternating knot diagram because we cannot make any further reductions.)
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Definition 3.7.9. Tait conjecture
If D is a reduced alternating knot diagram of k* then ¢(D) is minimal, i.e.
c(D) = c(k¥)

Definition 3.7.10. A knotoid diagram is alternating if traversing the
diagram from the head to the tail one meets under- and over-crossings in an
alternating order.

Proposition 3. All alternating knotoid diagrams in S? have height 0.

Proof. For a diagram K of positive height consider the region of S? — K
adjacent to the head of K. This region is not adjacent to the tail of K.
Analyzing the over/under-passes of the edges of this region, we can observe
that K cannot be alternating. 0
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3.8 Crossing number of spherical knotoids

Definition 3.8.1. Given a knot k* C S3, the crossing number c(k*) is the
minimal number of crossings in a knot diagram of k*.

One can use knotoid diagrams to define two similar invariants c4(k*) that by
definition they are the minimal numbers of crossings of a knotoid diagram
K such that K = k*.

Note that cL(k*) < ¢(k*) — 1 because the knotoid diagram of k* can be
obtained from a knot diagram of k& with minimal number of crossings by
cutting out an overpass (underpass) containing one crossing.

If a minimal diagram of £* has an overpass (underpass) with N > 2 crossings,
then cy(k*) < c(k*) — N.

Definition 3.8.2. Given a knot £*, we can construct a Seifert surface of a
knotoid diagram K of £* in this way: every crossing of K admits a unique
smoothing compatible with the orientation (see figure 1.2.2) of K from the
leg to the head. Applying these smoothings to all crossings, we obtain an
oriented 1-manifold K C S2.

This K consists of an oriented arc J C S? (with the same endpoints of K)
and several disjoint simple closed curves. The closed curves bound a system
of disjoint disks in S? lying above S%2. We add a band J x [0,1] lying below
S? and meeting S? along J x {0} = J. The union of these disks with the
band and with half-twisted strips at the crossings is a compact connected
orientable surface in S3 bounded by K_ = k*. The genus of this surface is
(K)—|K|+1
N 2 N
and | K| is the number of components of K.
¢(D) — |D| + 1

equal to g(S) = ¢ where ¢(K) is the number of crossings of K

So g(k) <

Definition 3.8.3. Turaev conjecture Minimal diagrams (with respect to
the crossing number) of knot-type knotoids have zero height.

To proof the Turaev conjecture we need of one definition and two theo-
rems:

Definition 3.8.4. K; < K, means that K, is obtained by deleting some
chords in the chord diagram of Gauss code (see definition 2.6.3) of K,. This
means that some classical crossings of K are made virtual to obtain K.

Theorem 10. (Nikonov)
There is a map pr from minimal genus virtual knot diagrams to classical knot
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diagrams such that for every virtual knot diagram K we have pr(K) < K and
if two diagrams K, and Ky are related by a Reidemeister move then their
images pr(Ky), pr(Ks) are related to each other by a Reidemeister move

Theorem 11. (Manturov)

For every wvirtual knot diagram K there exists a classical knot diagram D,
such that D < K and K admits the same Gauss diagram of D if and only if
K s classical.

Proof. (Turaev conjecture) Let k be a knot-type knotoid and by absurd we
assume that i.e: there is a minimal diagram of k, K; that has a non-zero
height.

Let n be the number of crossings of K.

The virtual closure of K, v(K;) is a virtual knot diagram with n classical
crossings and a number of virtual crossings that is at least equal to the height
of Ky. We know that k is a knot-type knotoid then the virtual closure of k,
v(k) is a classical knot, and the virtual knot diagram v(K) lies in the virtual
equivalence class of v(k) since the virtual closure map v is a well-defined map
on the set of knotoids in S2.

Now we compute the Euler characteristic in this way:

X(F(Ky)) = #vertices—#edges+#discks = (n+2)—(2n+1)+6 = —n+1+6

The genus of the closed connected orientable surface F'(K;) obtained by at-
taching 2-disks to the boundary components of the abstract knotoid diagram
surface associated to K; (to more details see [4]) is given by:

_2-X(FUR) | (=1 =4
2 2
where n is the crossing number of K7 and ¢ is the number of boundary com-
ponents of the abstract knotoid diagram. This is equal zero because K, has
only classical crossings.
The number of boundary components of the associated abstract knotoid
diagram (i.e 9) is equal to the number of planar regions (see definition 2.1.7)
determined by the diagram K;. We can see that the boundary components
that are adjacent to the endpoints of K7, are distinct since the endpoints of
K are in different regions.
Furthermore, connecting the endpoints of K; virtually we get v(K;) and it
does not change the number of classical crossings but reduces the number of
boundary components by 1 (i.e. 6 —1)).
In a similar way as above the genus of the closed connected orientable surface
F(9(K7)) obtained by attaching 2-disks to the boundary components of the
abstract knot diagram surface associated to v(K7) is given by the following
formula:

g(F (K1) =0
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oF() =1+ =0 yr) +1=1

By Nikonov’s theorem, any minimal diagram of v(k) has strictly less than
n classical crossings. Let K be any minimal diagram of ©(k), and K has m
classical crossings, then m < n.

The image of K under the map a (definition 2.2.3) is a knot-type knotoid
diagram K with m crossings.

The underpass closures of knotoids diagrams K and K; are isotopic to knot
v(k), this implies that K and K; are equivalent to each other since the
underpass closure is a bijective map on the knot-type knotoids.

We have assumed that K; is a minimal diagram of k£, then n < m and
this contradicts the above inequality. So, the assumption is wrong and the

theorem follows.
O

Remark 3.8.1. Turaev conjecture gives the following result: The crossing
number of a knot-type knotoid is equal to the crossing number of the knot
that is the closure of the knotoid.

The problem of determining the exact value of the crossing number of a
knotoid is very complicated. Any diagram gives an upper bound of the value
but not many lower bounds are known.

3.8.1 The bracket polynomial and the crossing number

When defining the bracket polynomial, we have seen the notion of state of
a knotoid diagram that is a simple curve in S? obtained smoothing each
crossing in two different ways in figure 3.1. This yields a single arc (with
endpoints) and several disjoint circles.

Definition 3.8.5. Given a bracket polynomial
<K> _ Z Aa(s)(_AQ . A72)p(s)71 c Z[A:HL
seS(K)
the span of a knotoid diagram K is defined by
spn(K) = spn({K)) = max exp((K)) — min exp((K))

Lemma 6. Let K C ¥ a knotoid diagram with n crossings then:
1) maxexp((K)) < n+2p(sy) —2
2) minexp((K)) < —n —2p(s_) +2
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Proof. The bracket polynomial is (K) = Z ATG) (=A% — AP g0
seS(K)

max exp((K)) = o(s) + 2(p(s) — 1)
minexp((K)) = o(s) - 2(p(s) — 1)

If we consider s € S(K), it is a state where there are some positively
smoothed and some negatively smoothed crossings.

We can pass from state s to state s, through a sequence of states s =
S0, 81, .-, S» = Sy where we change only one smoothing between one state
and the next.

We immage to change all the negative smoothings of the state s to positive
smoothings one by one.

The sum of signes of s; is o(s;) = o(s;41) — 2.

The number of components is p(s;) = p(si+1) = 1.

Each time we reverse a smoothing, the number of components can increase
or decrease by one.

We consider the maximum exponent

o(si) +2p(s;) —2 < o(sit1) +2p(si41) — 2
this is true for every step, then
o(s) + 20(s) — 2 < o(s) + 2p(s) — 2

n Then, we get 1).
Similarly, to see 2) we have a sequence from s to s_, we immage to change
positive smoothings of the state s to negative smoothings one by one. O

Proposition 4. Let K C ¥ be a connected knotoid diagram (that is the flat
knotoid diagram associated to K is connected).
Let s1 € S(K) the unique state of K such that o(sy) = £¢(K) then

plsy) +p(s-) < o(K) +2.
If K is alternating : p(sy) + p(s—) = c(K) + 2

Proof. By induction on the number of crossings :

If ¢(K) = 0 then we have trivial knotoid K =~ ~\_"

In this case the states s, and s_ are equal because there are no a crossings

to be smoothed then p(sy) = p(s_) = 1 and hence p(sy )+ p(s_) < c(K)+2

is true, it will be 2 < 2.

Suppose we have ¢(K) > 0. We consider an any crossing and its smoothings.
If K is connected then K, or K. must be connected and we call the

connected one K’ = Ky or K. We get ¢(K') = ¢(K) — 1 < ¢(K) then we
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K K, K,
A )0 =
X =)

Figure 3.5: Smoothings of crossing

apply the induction Suppose to solve all crossings of K’ in positive way (Kj)
and we get s,

Ko p(sy)=p(sy) , p(sL)=p(s-)£1
K' =< or
Koo o plsf)=plss)£1 ,  p(sL) =p(s-)

If K’ = K then the crossing is positively smoothed. Now if we take the state
in which the other crossings are positively smoothed, we obtain the state of
K where all the crossings are positively smoothed s, .

So we have s, = s; and p(s',) = p(s4).

Therefore if we smooth the first crossing in positive way, we obtain s’ where
the first crossing is positively smoothed an the other crossings are negatively
smoothed.

The state s is different from s_ because s_ is the state where all crossing
are negativly smoothed.

To pass from s to s_, we must change the smoothing of the first crossing
and in this case the number of components increase or decrease by 1.
Similarly if K’ = K, then the crossing is negatively smooth. We get:

p(s4)+p(s2) < p(sy) = p(s)+1 < o(K')+2+1 = ¢(K)—142+1 = ¢(K)+2

If K is alternating then (by proposition 3 and the Turaev conjecture) K is
a diagram of knot-type knotoid; we can close the knotoid diagram and we
obtain an alternating knot diagram:.

So, if h(K) = 0 we can close the knotoid diagram we get a knot diagram D
and we can see that there is a one-to-one correspondence:

state s1 <— white and yellow regions of a checkerboard coloring of the
diagram D

When we draw a diagram and we think it as a graph (or flat diagram), it
divides a surface ¥ in a finite number of regions. At each crossing we have 4
regions and we color them one yellow, the next white,...in altertating way.
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Suppose we consider in any region bounded by the alternating diagram D of
knot:

(A) (B)

O 0
O N QD/@Q
\ Q N\

In the Figure (A): turning in a counterclockwise way, each edge of the
region begins with an overpass and it ends with an underpass.
In Figure (B): turning in a counterclockwise way, each edge of the region
begins with an underpass and it ends with an overpass.
If we consider the negative smoothing in all crossing of the region diagram
(A), s_ is the number of the white regions while s, is the number of the
yellow regions.
If we consider the positive smoothing in all crossing of the region diagram
(B), s; is the number of the white regions while s_ is the number of the
yellow regions.
The idea is p(s.) + p(s—) = number of white and yellow regions
Now, using the Euler theorem (For every polygonation of S? we have

#{polygons} — #{edges} + #{vertices} =2), we get
#{polygons} = #{regions} = p(s,) + p(s_),

and so

#{vertices} = #{crossings} = ¢(D).

At every vertex there are 4 edges, every edge has 2 vertices then

#{edges} = 4#{vertices}/2 = 2#{vertices} = 2¢(D).
So we get

pls1) + pls_) — 2¢(D) + (D) = 2,

38



hence p(s4) + p(s=) = ¢(D) + 2.
[

Theorem 12. Let X be an oriented surface. For any knotoid diagram K C X
with n crossings,

spn((K)) = spn(Jx(A)) < 4n (*)
Proof. By the previous lemma and p(sy) + p(s_) < 2+ n:
spu(K) = spn((K)) = maxexp((K)) — minexp((K)) <

<(n+2p(sy)—2+n+2p(s_)—2) <4dn
0

Remark 3.8.2. The factor (—A~3)""5) of the Jones polynomial appears
in all terms of the polynomial and when we calculate the maximum degree
minus the minimum degree, this factor is irrelevant.

Remark 3.8.3. The theorem implies that for any knotoid k in X,
spn((K)) < de(k),

where c(k) is the crossing number of k defined as the minimal number of
crossings in a diagram of k.

Remark 3.8.4. span((K)) = 4n if the knotoid diagram is alternating.
Lemma 7. For an arbitrary FKD F, the inequality ¢(F) > 2h(F) is valid.

Proof. We proceed by induction on ¢(F).
Let ¢(F) = 1. There exists exactly one FKD F for which ¢(F) = 1, i.e.

‘\QJ.. The height of FKD is equal to 0 then ¢(F') > 2h(F) is holds.
Let ¢(F) > 1.

If F is not prime, then at least one of conditions (i) and (ii) in the definition
2.5.2 of a prime FKD does not hold.

(i)Every embedded circle meeting F' transversely in exactly two points bounds
a disk meeting F' along a proper embedded arc or along two disjoint embed-
ded arcs adjacent to the endpoints of F.

(ii) Every embedded circle meeting F' transversely in exactly one point bounds
a regular neighborhood of one of the endpoints of F'.

So, there is an embedded circle C which intersects F' in 1 or 2 points and
such that each disk bounded by C contains at least one crossing. If the circle
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C intersects F' in exactly 2 points (i.e. the condition (ii) does not hold) then
one of disks bounded by C (denote it by D) does not contain the endpoints
of F. Consider the FKD F” obtaining from F' by contracting the disk D to a
point or, equivalently, by replacing the fragment inside D with a simple arc
connecting the same point in 9D.

Then we have ¢(F') > ¢(F") and h(F) = h(F").
By induction assumption ¢(F) > 2h(F"), hence

(F) > ¢(F') > 2h(F") = 2h(F)

If the circle C intersects F' in exactly 1 points (i.e. the condition (i) does
not hold), then C cuts F' into two non-trivial FKD F; and F, which lie in-
side different disks bounded by C. F; and F; are obtained as a result of a
contracting into a point the disks D; and D, respectively. In these disks the

circle C cuts the sphere S2.
. ()

/

O

c(F)
c(F)

@/

Then

c(Fy) + c(Fy)
o(F) i=1,2
h(F) = h(Fy) + h(Fz)
By induction assumption c¢(F;) > 2h(F;), i = 1,2, hence
c(F) = c(Fy) + c(Fy) > 2h(Fy) + 2h(Fy) = 2h(F)

If F is prime, then for the following Theorem 13 the inequality c¢(F') > 2h(F)
is true. O

||V||
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Theorem 13. If F' is a prime FKD then
c(F) > 2h(F)

We omit the proof that you can find in the reference [12]).

Now, the following theorem is fundamental to find a lower bound for the
crossing number of knotoid.

Theorem 14. For a knotoid K
o(K) > 2h(K)

and there exists an infinite family of knotoids for which the inequality becomes
equality.

Proof. Given a knotoid K and a minimal diagram D of it, that is ¢(D)=c(K).
Consider a FKD F' (see definition 2.5.1) that is obtained from D as a result
of forgetting over/under-crossing information in all crossings. By definition
the height of knotoid is the minimum of the height over all representative
diagram h(F') > h(K) and using the Lemma 7, we get:

o(K) = c(F) > 2h(F) > 2h(K).
]

3.8.2 A lower bound for the crossing number of a kno-
toid via the extended bracket polynomial

Definition 3.8.6. EXTENDED BRACKET POLYNOMIAL of kno-
toids

Let K be a knotoid diagram in S2. Let a C S? be a shortcut for K.

Given a state s € S(K), consider the smoothed 1-manifold K, C S? and its
arc component kg (the smoothing of K is effected in small neighborhoods of
the crossings disjoint from a).

Then, ks coincides with K in a small neighborhood of the endpoints of K.
In particular, the set 0k, = Oa is formed of the endpoints of K.

We orient K, kg and a from the leg of K to the head of K.

Let ks - a be the algebraic number of intersections of k, with a, that is the
number of times k, crosses a from the right to the left minus the number of
times ks crosses a from the left to the right (the endpoints of ks and a are
not counted). Similarly, let K - a be the algebraic number of intersections of
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K with a.
The extended bracket polynomial is given by:

() = (~ APy o0 n 37 ATyt 42— A7)0 € A= o
seS(K)

Lemma 8. The polynomial ((K)) does not depend on the choice of the short-
cut a and it is invariant under the Reidemeister moves on K.

Proof. Any two shortcuts for K are isotopic in the class of embedded arcs in
S? connecting the endpoints of K. Therefore to verify the independence of
a it is enough to analyze the following local transformations for a:

(1) pulling a across a strand of K (this adds two points to a N K);

(2) pulling a across a double point of K;

(3) adding a curl to a near an endpoint of K (this adds a point to a N K).
The transformations (1) and (2) preserve the numbers K - a and ks - a for all
states s of K.

The transformation (3) preserves ks - a — K - a for all s.

So, ((K)) is preserved under these transformations and does not depend on
a. Now we consider the 'unnormalized’ version (K, a)) of (K)) i.e.

<<K, a>> = Z AU(S)uks-a(_AZ —A_Q)p(s)_l

s€S(K)

The polynomial (K, a)) depends on a but does not depend on the orientation
of K (to compute kg - a one needs only to remember which endpoint is the
leg and which one is the head). The polynomial (K, a)) satisfies the relation:

(K, a))= A(Ko, a) + A7 (K, a))

where Ky and K, are obtained from K by the smoothings of a certain
crossing(see figure 3.5).

(K, a)) is invariant under the second and third Reidemeister moves and it is
multiplied by —A*? under the first Reidemeister moves. Such moves preserve
the number K - a and therefore they preserve ((K)). Since the polynomial
does not depend on a, it is invariant under all Reidemeister moves on K. [

Definition 3.8.7. The A-span and the u-span
Let F € Z[A*' u*!'] be a polynomial.

We consider F' as a finite sum Z FZ-JAiuj, where F; ; € Z.
i,jEL
If F' # 0, we define two numbers:
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(1)spny(F) = iy —i_ where iy (i_) is the maximal (the minimal) integer i
such that F; ; # 0 for some j;

(2) spn,(F) = j; — j— where j; (j_) is the maximal (the minimal) integer j
such that F; ; # 0 for some .

For a knotoid k in S?, set spn,(k) = spn,({(k)) and spn, (k) = spn, ({(k))).
Both these numbers are even (non-negative) integers. So we get:

spn(k) < spn (k) < 4e(k)
and
spn,, (k) < 2(k, - a) = 2h(k)

where ¢(k) is the crossing number of knotoid and h(k) is the height of knotoid.
So we obtained a lower bound for the height of a knotoid via the extended
bracket polynomial. These inequalities are proved similarly to (x).

By the theorem 14 we obtain the following statement

Corollary 1. For a knotoid K

c(K) = spn, ({k))

3.8.3 A lower bound for the crossing number of a kno-
toid via the affine index polynomial and the arrow
polynomial

Recall the following theorems:

Theorem 7 Let K be a knotoid in S?. The height of K is greater than or
equal to the maximum degree of the affine index polynomial of K.
Theorem 9 The height of a classical knotoid K is greater than or equal to
the L-degree of its arrow polynomial.

By the theorem 14 we obtain the following statement

Corollary 2. For a knotoid K

c(K) < 2maxexp(Px(A))
and
c¢(K) < 2maxexp(A(K))

where max exp(Pg(A)) and maxexp(A(K)) denote respectively the maxi-
mum degree of the affine index polynomial and L-degree of the arrow poly-
nomial of K.
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Chapter 4

Knotoids and protein chains

A protein chain is a polymer formed by the union of amino acids and the
bond between two amino acids is the peptide bond. We can imagine a
protein as a pearl necklace where each pearl is an amino acid. (see Appendix

C)

Amino-terminal

residue with free Carboxyl-terminal

: i - H
amino group I | | residue with free
{not inveolved in ‘:_\' [:_N carboxyl group
the peptide H O H O H

bond) Amino-terminal Carboxyl-terminal

In the last twenty-five years numerous studies have revealed that there are
proteins whose main chain fold into non-trivial topologies and this implies
the presence of knots in their conformation.

The precise nature of the structural and functional advantages created by the
presence of knots in the protein backbone is a subject of high interest from
both experimental and theoretical point of view. To better understand this
open problem, several attempts have been made towards the characterization
and classification of the protein chains based on their knot type.

A protein chain, to perform its biological function, has to reach first its
native folded state. Proteins in their native folded structure are frequently
quite rigid and a continuous deformation from protein chain to a straight line
is not allowed.

So the analysis of their knottedness has to be done for their open chains with
fixed geometry. A protein is represented as an open polygonal chain.
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Early approaches to the study the knottedness of protein chain required
closure of the protein polypeptide because available mathematical tools that
could be used to determine the knot type could only analyse closed curves.
With the word closure we mean an artificial extension of the open polygonal
curve representing the polymer chain that we want to study, so that its ends
are connected and we get a closed curve. Various methods of chain closure
have been proposed, for example:

(A)Direct closure: The polygonal is closed by connecting its ends with a
straight line;

(B)Stochastic closure: This approach is based on a "statistical definition of
knottedness", by which a set of closures is defined. Two variants of this
scheme have been defined:

-(In blue on the figure)We consider a sphere that enclose the whole curve (the
protein chain). We generate a set of N points r;, uniformly distributed on
this sphere. N different closures of the curve are then defined by connecting
each r; to both ends. This gives us a spectrum of topologies, in which the
most populared state is chosen as the topology of protein chain.

In those cases in which no clear dominant state emerges, no knot type is
assigned. The randomized direction of the chain extensions implies that
interference with the polymer can occur in a relevant number of cases.
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-(In red on the figure) In the second variant, proposed by Mansfield, the
procedure is the same, with the difference that N pairs of points r; are
generated on the sphere that encloses the protein chain. Each point of the
pair is connected by a straight segment to one of the two curve ends, and
then they are joined with an arc on the enclosing sphere.

After closure, formed knots identification is achieved via computation of a
knot polynomial; all knots that are encountered within the backbone of a
protein are relatively simple and thus they can be identified by polynomial
invariants of knots such as the Jones polynomial for example.

Ezxample of stochastic closure:

)

Figure 4.1: We consider a closing direction and two rays extending (paral-
leling to closing direction) from the ends to the sphere’s surface that enclose
the protein chain. On the right of the figure, we can see the resulting knot
diagram.

With the discovery of the concept of knotoids we have a big news: the
topology of open chains can be analyzed using just projections of these chains
without the need to close them.

Hence, we consider that the protein chain is a knotoid where the N-terminal of
the chain is the "tail" of knotoid and the C-terminal is the "head" of knotoid.
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Ezample:

)

Figure 4.2: We consider a plane and two black infinite lines that pass through
the N-terminal and C-terminal of the protein chain. These two lines are
perpendicular to the chosen plane. On the right of the figure we can see the
resulting knotoid diagram.

4.1 Database KnotProt 2.0

The KnotProt 2.0 is an online database that collects information about pro-
teins using the concepts of knot and knotoid.

We will focus on how it uses the knotoid approach to analyse knottedness
of entire protein chains and of their all possible subchains.

4.1.1 The study the global entanglement of protein chains

KnotProt 2.0 is based on the results of a software KNOTO-ID.

Now we want to describe the implementation of this software.

Each protein chain in space is considered as a polygonal curve, we trace the
coordinates of its essential contituents, that is the carbon atoms that are con-
tained in the amino acids that form the protein (also called C, atoms) (to
see the structure of the amino acid in appendix C) The coordinates of the C,,
atoms of the protein backbone can be extracted from a pdb file downloaded
from the PDB (www.rcsb.org).

Proteins appear in various, often very complicated, conformations and the
study of their topology is very difficult.

The projection of protein chain is simplified using Reidemaister moves and
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the triangle elimination (or KMT (Koniaris-Muthukumar-Taylor) algo-
rithm):

- we choose a projection plane and then we take consecutive triples of points
of the curve;

- we check if the surface of the triangle that the three points form is pierced
by any other part of the curve or by any of the two infinite lines that pass
through the endpoints: if it isn’t pierced, we remove the middle point of the
triplet;

- we repeat the process with the next triplet and so on.

The protein chain lies into a large enough sphere. In this case each point of
the sphere corresponds to a projection direction on a surface that lies outside
the sphere.

When the projection direction is determined, we consider the two infinite
lines and we apply the simplification KMT algorithm on the chain.

We projecte the protein chain on a perpendicular sphere to the chosen direc-
tion and we obtain a specific knotoid.

Each knotoid type is assegned a color and, hence we color the point of the
sphere’s surface that corrisponds to a chosen direction with the corrispondent
color of the knotoid that we obtain projecting in this direction.

Each distinct region corresponds to the projection directions that produce
the same knotoid type.
In the section 2.2, we have seen the differences between planar and spheri-
cal knotoids. We can further refine the projection globe of an open protein
chain, by forbiding to push arcs around the surface of the sphere and consid-
ering projections of the chain on a plane instead. This will allow projections
that were previously detected as unknotted to emerge as non-trivial planar
knotoids.
Finally, a topological invariant is evaluated on the knotoid diagram.
In particular the Jones polynomial and the arrow polynomial is evalueted for
curve projected on a sphere, while for curves projected on a plane we will
consider the Turaev loop bracket polynomial and the loop arrow polynomial.
The knotoid type corresponding to the resulting polynomial can be obtained
using the list knotoid types distributed with Knoto-ID.
The spectrum of knotoid types can be visualized using projection maps gen-
erated by Knoto-ID.

Remark 4.1.1. A three-dimensional curve corresponds to many different
knotoid diagrams since different projection directions may yield different
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and non-equivalent diagrams. The knottedness of an embedded curve in
the 3-dimensional space is a probability distribution over all of its possible
projections.

Sampling the distribution allows one to approximate the dominant kno-
toid, i.e. it is the knotoid that appear with the highest probability.

The dominant knotoid type corresponds to the region that occupies the
largest area in the projection map, which is usually easily identified.

N

Ezxample of generical open curve:
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On below of the figure we see the stereografic projection of the sphere.
In this particular example it was sampled 10000 projections of the open curve.

4

In this case the dominant knotoid is:

Remark 4.1.2. Regarding the symmetry, in principle, knotoids in S? exhibit
antipodal symmetry in their projection maps while planar knotoids don’t.
In this example we can see the symmetry of the spherical knotoids 3;, 5; and
we don’t see the simmetry of planar knotoid for example 4,
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Now we see some examples of projection maps that we can find in the
KnotProt 2.0:

SAIAA CRrsTaL STRUCTURE OF DUF358 REVEALS A PUTATIVE SPOUT-CLASS METHLTRANSFERASE .-_z

A

Knotting data (Main chain) Knotoid fopology o Chain information Similar chains (by sequence) Similar chains (by structure)

analysis

latitude

longitude

I 21 <ot e 2 [ 4 3 [ 5.3m
k5.4 oS s N ke 22m [ k111

iHelp || iKnotoid data interpeetation || Full screen || &Downlad

Dominant knotoid: k3.1

1 | PAA CRYSTAL STRUCTURE OF RNA 2'-0 RIEOSE METHYLTRANSFERASE

N

Knotting data (Main chain) Knotoid topologyo Chain information Similar chains (by sequence)

Whole chain anal

latitude

0
longitude

2 < s e Il unknowN

i Help | | iKnotoid dats interpretation || ¢*Full screen || deDownioad

Dominant knotoid: k3.1
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Why we don’t see the symmetry of spherical knotoids?

KnotProt 2.0 considers the probability distribution of knotoid types over 100
uniformly distributed projection directions, a larger number would improve
precision, but makes computations slower.

What’s the optimal number of projection?
In the article [10] Agnese Barbensi and Dimos Goudaroulis give an answer
to this question using the following concept:

Definition 4.1.1. Given two knotoids k; and ko, their forbidden move-
distance or f-distance d(ky, k3) is the minimal number of forbidden moves,
across all representatives of k; and ks, needed to transform k; into k.

Consider a generic projection of a protein chain on some plane and let &
be the corresponding knotoid. If we continuously perturb the projection di-
rection until the knotoid type changes to &', we will obtain a pair of knotoids
with df(l{,k/) =1.
The spectrum of a protein chain depends on the number of projections.
Therefore, there is a higher chance for regions corresponding to knotoids with
dy > 1 to appear next to each other.
Since the predominate knotoid corresponds to the largest region of the pro-
jection map, it is sufficient to focus on the discrepancies between the region
of the predominate and its immediate neighbours.
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Definition 4.1.2. The spectrum Spec(s) of a projection map is the num-
ber of distinct knotoids in the approximated knotoid distribution obtained
considering s randomic projections.

Definition 4.1.3. The interface error er(s) associated to a sample set of
size s of a projection map is the ratio of the number of regions that are
adjacent to the region of the predominate knotoid ky that correspond to
knotoids k; for which d(ko, k;) > 1, over the number of all adjacent regions
to k.

Agnese Barbensi and Dimos Goudaroulis wanted to see how these two
coefficients were related to each other.

In particular, they analysed all the proteins with predominate knotoid
type 31 (there are 517 such proteins in total deposited in the Protein Data
Bank), using an increasing number of random projections: 50, 100, 500, 1000,
5000 and 10000 projections. Each time er(s) and Spec(s) were calculated for
the respective projections map.

They computed the average interface error for one each of the six cases of
projections sample size.

0.148

0.128

0.087
0.074

Average Error

0.049
0.040

1 1 I 1 1
50 100 500 1000 5000 10000
Number of projections

By gradually increasing the number of projections, regions will become pro-
gressively finer and so the possibility of having pairs of adjacent cells with
ds > 1 will effectively decrease, hence the error er(s) will decrease.
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Throught 10000 projections they had the most accurate overview of the topol-
ogy of the protein chain.

Another aspect found out by the authors is that the differences between
results obtained using 5000 and 10000 projections respectively were not sig-
nificant, so analysing a protein with 5000 projections may provide the best
compromise between computational speed and accuracy.

4.1.2 The study of the protein subchains

Now we want to know:
-how large is the knotted core;

knotted core

e

-if a given polypeptide chain contains subknots, i.e. they are less complex
knots located inside more complex knots.

This information can be provided through when one analysis knottedness of
every possible subchain of a given protein.

Given a protein chain, the analysis of every subchain provides the knot-
ting fingerprint, which is usually presented in a form of triangular matrix
where every point in the matrix informs what is the dominant knotoid type
for a given subchain.

Given a protein chain, we start studying its local entanglement behaviour
by clipping the chain one a-Carbon atom at a time, starting from one of
endpoints of the chain.

Each time we obtain a shorter chain, which we analyze in terms of the knotoid
technique that is, by projecting the trimmed chain along random directions
and then computing the Jones polynomial of each projection.
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Example

k0.1 k2 1 k3.1

BB @

(only one end of projected chain is progressively trimmed)

Notice that as we trim the chain, we observe that the knotoids types change.

Ezample 3KZN protein chain:
The knotoid fingerprint matrix obtained from KnotProt 2.0:

B o k411
B« K4.12
k2.1 k4.4
I kerke3 || ka4
g - B2 a2
£ ) K5.200
g l K5.27
] kss
k3.23m . k6.1
IGE
] unknown

start index

Each point in this matrix corresponds to the dominant knotoid type for a
subchain of the protein chain.

The x-axis goes from N-terminal to C-terminal of the protein chain, while
the y-axis goes from C-terminal to N-terminal.
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The point in lower left corner corresponds to the whole chain.

Moving to the right along the x-axis, we cut the chain starting from one
endpoint (the N-terminal) while moving up the y-axis we are cutting vertices
from the other endpoint (C-terminal) of the chain.

KnotProt 2.0 use a colour code to indicate the dominant knotoid types ap-
pearing in this fingerprint matrix.

In the fingerprint matrix we also identify the ’knotted core’, i.e. the shortest
subchain whose knotoid type is the same as the knotoid type of the whole
chain. On the figure the yellow circles are centered on knotted core.

In this case the dominant knotoid is 6;: KnotProt 2.0 gives us this informa-
tion throught the projection map (the dominant knotoid type corresponds
to the region that occupies the largest area in the map) and throught a row
data.

Row data:
index__ first index _last  length  frequency  knotoid type
35 305 270 0.22 k6.1

KnotProt 2.0 gives us an other visualization of knotoid fingerprint matrix:

1 ' B E—

Residue index: (x, y) = (15, 302) 0 k3.2

1 0
6 4 Knot info: k& 1 { :I I
1 0

Frequency: 0 45

187 0 k2.3 1 0 k3.4 1

Residue index

0 k5.200 1 0 k3.23m 1
249 4 —_—
e | e | 1 [T
Knotoid - o UNKNOWN 4 g k3.1 1
Natok
ot : [T [T
0.1 1 6 125 187 249 k2123 1 4.4 1

]

Residue index

If we point the cursor at a point corresponding to some knotoid, Knot-
Prot 2.0 shows in a blue box: the x- and y-coordinates of knotoid, the type
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and the frequency of knotoid.

Color corresponds to dominant knotoid type of the subchain and trans-
parency corresponds to its frequency.

Remarck:The knotoid distribution usually includes many different types of
knotoids. It is possible that many of those types in the distribution to have
a very small probability of appearing in a projection. This means that if
we plot the knotoid matrix of the subchain analysis, we will have a very big
list of different colors that may be confusing or not useful for that partic-
ular application. The "knotoid cutoff" is a lower bound that simplifies the
visualization of data. For example "knotoid cutoft"=0.5: we get only those
projections that appear more than 50% of the times.

If we set the cutoff to 0.5 the knotoid matrix of the example becomes:

125 4

187 4

Residue index

249 =

Knaotoid

cutoff r T - T
05 1 L] 125 187 249
Residue index

0 k5.5 1 0o k6.1 - k3.2 1
H k2.1 1 o K31 i & k2.3 2

0 k3.2m 1
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The knot fingerprint matrix of the 3KZN protein chain:

/Knot K +34 44 +51/

1.0
1
knot core o
;\____ kenuat Eall 03 g
LER
75
0.0
=
x 10
= 125
g 0.5 r'—-;
= 2
i -
g 187
0.
1.0
249
n ]
-
51 05 ¥
=
T

T T T
1 LE] 125 187 248

¥ g 0.0
Residue index

KD]
| A
= slipknot slipknot +3, 0,
) E& K
E K=
=
g ol A ~
2 =
U 283 4
=11}
£
Y
= Ln
285 /H‘
=y T+6] slipknot +6, 0,
Y- K x 0
w0 SV p S P g
0 20745 55760 70775

clipping N—terminal

In the knot fingerprint all subchains of the protein chain were analyzed using
the stochastic closure technique. The knot core on the figure, is the short-
est subchain for which a dominant knot is detected (i.e. after cutting an
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aminoacid from any terminal of such a subchain, just a trivial knot would be
detected).

In the knot fingerprint it observs that, in addition to the 6; dominant knot
formed by the entire protein, the smaller subchains form 4; and 3; knots.

Now comparing the knotoid fingerprint to knot fingerprint we observe
that the knotoid approach gives us more details on the different topological
forms.

We can see that the regions of non-trivial knots of the knot fingerprint of
protein are contained inside regions of the knotoid fingerprint.

There are new regions in knotoid fingerprints that correspond to non-trivial
proper knotoids that either border regions of knot-type knotoids (e.g. the
regions of knotoid 2.1 that encircle the knot-type knotoid 3.1) or show up
within trivial knotoids (the small slices of 2.1 and 3.2). The knotoids ap-
proach produces more refined fingerprints of the protein chains.

4.1.3 Comparation of the projection globes of protein
chain

We consider 3KZN protein and we want to compare the projection globe
obtained from the planar knotoids approach, to the one derived from the
spherical knotoids approach and to the one that is derived from the uniform
closure technique.

We can see that, from knots to spherical knotoids and then to planar kno-
toids, we have a gradually emerging of new regions.

The reason behind this is that the number of classes of planar knotoids is
larger than the number of classes of spherical knotoids.

We can conclude that analyzing open protein chains as planar knotoids re-
veals more details of their topology.

The projection globe and map for the uniform closure technique:
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Knot type

300° 310° 320° 330

composite
> 6 crossings

__ 60

§ Knot type

o o,

g .

& B 6,
composite

> 6 crossings

180 210 240 270 300 330
8 (degrees)

The projection globe and map for the spherical knotoids technique:

Knotoid type
k2.1
k3.1¢
ka4.2"
k4.3”
k4.8
k5.9
T 300° 310° 320° 3307 340 2 30 k6.4
k6.8~
k6.10
k6.11~
k6.12
composite
> 6 crossings
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o (degrees)
8

180 210 300

6 (degrees)

240 270

330

”E';“: Wks.10
ﬁ‘a k6.1~

Knotoid type

k2.1
k3.1¢
k4.2~
k4.3~
k4.8

k5.9
3 W64

k6.8~

k6.12
composite
|> 6 crossings

The projection globe and map for the planar knotoids technique:

Knotoid type
k2.1 k6.34°
k3.1 k6.35°
k4.2~ k6.36°
k4.3~ k6.37°
k5.9 k6.38°
k5.31p k6.40°
Twse e s s k5.32° k6.41°
k5.33° k6.42°
k5.34° k6.43°
k5.35° k6.44°
k6.4 k6.45¢
k6.8~ composite
k6.10 > 6 crossings
k6.11-
(1]
30
Planar knotoid type
k2.1 k6.34°
K3.1° Ika.ssn
60 ka.2- IMke.36°
= k4.3~ k6.37¢
g k5.9 k6.38°
-g) k5.31% kB.40%
. k532> [k6.417
E=3 B IKB.SS" I kB.42¢
k5.34° k6.43#
k5.35% kB.44*
120 k6.4 k6.45"
k6.8~ composite
610 | >6crossings
k6.11~

270 300 330

180
8 (degrees)

210 240

Notation on the figures: a knotoid is represented by kX.Y where:
X is the number of crossings of the knotoid diagram in question,
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Y corresponds to the position of the knotoid in the table of knotoids with
the same number of crossings,

° indicates a knot-type knotoid,

P indicates a planar knotoid,

~ a knotoid with its crossings inverted.

There is no wrong way to study the global entanglement of protein chain, it
depends that what we want to see.

So, we can to work with knots if we just want to see quickly what is the
dominant entanglement but if we want to see the real topology of a protein,
planar knotoids is the way to go because we get the full spectrum of all pos-
sible entanglements.
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Appendix A
Table of knotoids in S?

We consider the table of all distinct knotoids in the sphere S? with minimal
number of crossings of a knotoid diagram up to five crossings.

These knotoids have been distinguished by the use of some knotoids invari-
ants.

The notation follows the one in [5], that uses the scheme Xy , where X is
the minimal number of crossings of the knotoid and Y is the relative position
among all knotoids with the same number of crossings.

Labels in red correspond to knot-type knotoids.

||.\- \ I L | I!I.
N — | — ~L . I.-/r \_/ l.-"/ N
I'._ \ J | l,
\\. _/ \\.__ _./ \\ - _—// \\\ B )
24 3 3, 4
T e N S
III\\% — r ‘ N
— —.._\. If_,— - \ ~ ! \ - ——
ey GO | ]
N \_| - - N
./ ./ - N S
4q 4q 4, 4e

113




N )
o \ AR
- '\L|_/'
[ -
N \_ J
4 47
N —
\_
\_ |,/’ N ) 7‘\ )
L | |
U \_ _/,J
Do Dg
T ~
A~ a,
H—‘— - L C .
N, J
\_ N
55 a7
' —;\‘.
e o
/’"' ah
“xa____|_4 \17___}_,
N 2 BN
\__/ \__/
910 511

114

r ™~ ] 7
e T - (/r f,,-‘.q
B T (RN (%

\___/ N
4dq 9

D R
L YV
(! | R
\__/ N -
N AN J
5.:1_, 5,_,
'
TN
\-!a,‘\ ((‘ S‘j
~ ‘ L
N N
53 59
- 7\
- | \ Y
(D
‘ C‘_c \_‘g\\
N -l
\ P, \_
512 513



i

115




Appendix B
Table of knotoids in R?

We consider the table of all distinct knotoids in the sphere R? with minimal
number of crossings of a knotoid diagram up to three crossings.

7N R N
,. () 1 [ -
—| . \ e —-\‘ BE \ /,_ -
I.-'/ J. ‘ N | / ‘ N ‘
1 | \
IIII |l| \\_I_' \,\-_ / \\\__ .
AN _ "/ \ J o
14 25 23 24
e N7 N O
| | _7__‘\ I'f)_— -
) ( N [ - (
AN [~ ) | . e ‘ \_ ‘.-_.\i
1 | \
N - I
— \_. | H | N ] ‘ \_ .
. M S " _,/ \_
24 za 2{1 33

116



o 7\\“\ s ﬂ\ﬁ f
‘ C/_\ /u‘j e —.r'
Y L (R
| ‘ N ‘ N
N AN AN J
33 34 3
N [ —
(A () e
Nal R RIS
_‘ | \‘*‘i ) /|
N J )
37 3s 39
— e W e—
' | ] I
(T A (A ‘
C ‘ ‘ "\%_J o | ‘."
_ J kk_/’
AN / J
311 312 13
|/ N |/_\. P )
K_ ./:_-'\I - '"_‘*-\\ | . W
D 4 ) k‘C\ Y
\Jf\,/ __
316 317

117

G

L ‘
N

\__/

o J
36

'_\\.,

I

AN,

o/

310

N

sl

|\

N /
314
M

L]

N,

\__/

318



320

321

320

319

326

325

324

323

118



Appendix C

Biological macromolecules

Biochemistry is the science that describes the structures, reactions and chem-
ical processes that characterize living organisms.

The fundamental unit that constitutes the organism is the cell; more cells
organize themselves to form tissues, organs ...up to more complex organisms.
Inside the single cells there are continuously thousands of reactions that al-
low to produce energy that the cell will then use for other reactions.

There are four main classes of biological macromolecules in the cell: proteins,
nucleic acids, carbohydrates and lipids.

Macromolecules are made up of a limited number of chemical elements (mainly
carbon C, nitrogen N, oxygen O, hydrogen H) which join together through
chemical bonds; moreover, there are also functional groups which are char-
acterized by atoms that interact with each other and which often determine
the function of the molecule in which they are found.

Some examples:

Functional Group General formula
. H
Amino “NHa —NEH
Q
Carboxyl P
-COOH OH
Hydroxyl i —OH

In macromolecules the fundamental unit is the monomer.
The union of monomers forms the polymer.
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To pass from simpler molecules (monomers) to more complex molecules
(polymers), a textit condensation reaction is required which eliminates a
water molecule HyO. Conversely, to pass from more complex molecules
to simpler molecules, a hydrolysis reaction is required which adds a water
molecule HyO. Example:

O
Il HR
R—C—OH - CN=R
H
Carboxyl group Amino group
h
CONDENSATION HYDROLYSIS
REACTION K REACTION
4@n4_#/ —+H,0
\

0
|
R—C—NH—R

C.1 Protein and amino acids

The protein or polypeptide chain is a polymer formed by the union of amino
acids (monomers).

The bond between two amino acids is the peptide bond; amino acids in-
volved in the peptide bond are called amino acid residues.

Amino acid 2

Dipeptide
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In the peptide bond, the amino group of amino acid 2 reacts with the hy-
droxyl group (OH) of the carboxyl of amino acid 1.

The peptide bond is formed from the condensation reaction and a water
molecule is released.

Proteins are polymers consisting of at least 50 amino acid residues (up to
over 1000), while peptide is defined as the polymer consisting of less than
50 amino acid residues.

Based on the number of peptide bonds we will have: dipeptides (2 residues),
tripeptides (3 residues), tetrapeptides, pentapetides etc.

Amino-terminal

residue with free Carboxyl-terminal

i H -l b
GalllLioge LS o | N | | residue with free
(not involved in N—( 'E_"' { “;_” : carboxyl group
the peptide H O H O H
bond) Amino-terminal Carboxyl-terminal

In nature there are 20 standard amino acids, which have a common structure
that differs only at the level of their side chain (R group).

Structure of an amino acid

Hydrogen atom
H
Basic amino H,N — € — COOH Ca.r::-ox_l..'llc
group acid group
R
Side chain

Each amino acid has a central carbon involved in four bonds with:

1- Amino group

2- Carboxyl group

3- Hydrogen atom

4- Group R or side chain (which differentiates the 20 standard amino acids)
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The charge of the amino acid depends on the pH of the solution in which it
is found. The pH indicates the concentration of protons (of H™ ions) that
occur in a given solution.

Considering R non-ionizable (i.e. once in water do not produce any charge),
by changing the pH of the solution, the charge of the amino group will change
and the charge of the carboxyl group will change, then the charge of the
amino acid will change and the charge of the protein in which the amino acid
is present will change.

R

+ R
H H H I H
*HaN COOH *H3N (clefoly H,N («olon
H” H

S . '\\\ Both
] Zwitterionic form deprotonated
groups
c
2
E Both
% / protonated
g groups
vl
| | | | 1 J
0 2 4 6 8 10 12 14

At NEUTRAL pH (around 7) the carboxyl group is deprotonated (it loses
a proton) and the amino group is protonated (it buys a proton): the amino
acid charge is balanced, the overall charge is neutral.

The amino acid with neutral pH is called zwitterion and can behave as either
acid (proton donor) or base (proton acceptor).

O~ = R COO™ + H Proton donar

Proton acceptor

At 0 < ACID pH < 7 the carboxylic group and the amino group are both
protonated: the amino acid charge is positive.
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At BASIC pH > 7 the carboxylic group and the amino group are both de-
protonated: the amino acid charge is negative.

C.2 R groups of amino acids

According to the characteristics of the R groups there is a different polarity
of the amino acid.

Polarity is the tendency to interact with water at physiological (natural) pH,
the polarity of the R groups is highly variable.

NONPOLAR, ALTPHATIC R GROUPS
The aliphatic R groups contain more or less branched carbon sequences, they
not form ring-like chemical structures (except the Proline).
These groups are non-polar, hydrophobic, i.e. insoluble in water (they do
not interact with water). The amino acids that have such R groups are:

NONPOLAR, ALIPHATIC R GROUPS
Co0 (o]0 COO0 (olo}
H‘F;l—-(l_—H qu‘q—é—H . /le_:H H,-’I'-\k—(l:—H
i w4 E  gh
tht===%1% Cﬁa\CH3
Glycine Alanine Proline Valine
Co0 Co0 CO0
HA—C—H  Hfi—C—H  Hfi—C—H
T ™
tlzg (::H2 C:H2
CH; CH; CHy 5
i
Leucine Isoleucine Methionine

Curiosity: When the protein wraps itself in space, acquiring their three-
dimensional structure, the hydrophobic R groups are positioned inside while
the groups that interact more easily with water are positioned outside. If the
protein is damaged and therefore its three-dimensional structure changes |,
the hydrophobic parts will be on the outside, then the hydrophobic regions
of damaged proteins will interact with each other forming toxic aggregates,
typical of neurodegenerative diseases.
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AROMATIC R GROUPS
Aromatic groups have ring-like chemical structures.

AROMATIC R GROUPS
cloo- CIOO' cloo-
H;l:l—(IZ—H H,rﬁ—(i‘—H H;r:J—LI‘—H
CH, CH, cl:H;,
C=CH
\
NH
Phenylalanine OH
Tyrosine
Tryptophan

These three amino acids are relatively non-polar and can intervene in hy-
drophobic interactions. Tyrosine and tryptophan are more polar than pheny-
lalanine.

Curiosity: Tryptophan, tyrosine and, to a lesser extent, phenylalanine ab-
sorb UV light. This is why the protein has an absorption peak at 280 nm.

POLAR, UNCHARGED R GROUPS
These groups are not charged neither positively nor negatively, moreover they
interact in aqueous solution forming hydrogen bonds with water.

POLAR, UNCHARGED R GROUPS
coo CO0" coo
H;&—é—H Hil‘:l—C[j—H H;SJ-(I:—H
(Iin H—C—OH éHZ
O d, 3
Serine Threonine Cysteine
(delon COO"
HN—C—H  Hli—C—H
C:Hz (::Hr
H,N/c\\o Ew
HN Yo
Asparagine  Glutamine
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R GROUPS WITH POSITIVE CHARGE (BASIC)
Amino acids with these groups have a side chain with a net positive charge
at pH 7.0.
They are proton acceptors.

POSITIVELY CHARGED R GROUPS
CoO~ COo0O~ CO0O”
H;fﬁ—ml. —H H3I;I—C| —H H3r:1—r|.—H
d, e, ey
(:IHZ C:ZH;. cii_hNt:;H
CH; CH, /
CH, I\EIH ==
*NH, ct=rT4H2
Nt
Lysine Arginine Histidine

R GROUPS WITH NEGATIVE CHARGE (ACIDS)
Amino acids with these groups have a side chain with a net negative charge
at pH 7.0.
They are proton donors.

NEGATIVELY CHARGED R GROUPS

COO~ COO0-
H3F4—(|:—H H,r::—{l:—H
CHy H,
Loo- h,
iIZDD‘
Aspartate  Glutamate
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C.3 Protein structure

Proteins are said to be monomeric if they are costituited by a unique
polypeptide chain. In this case they will have: primary, secondary and ter-
tiary structure.

If they are made up of several polypeptide chains they are called multimeric
and will also have the quaternary structure.

PRIMARY STRUCTURE
The primary structure of the protein is given by the sequence of amino acids
linked together by peptide bonds. It is important to study it because:
1) The R groups of the individual amino acids that form the protein deter-
mine its function
2) To synthetically produce proteins, such as hormones and antibodies, in
the laboratory, in this way we will have greater quantities available
3) Changes in the primary sequence can produce anomalies of the function
and /or disease.

Ezxample 1

Oxytocin and vasopressin are two peptides with very similar pri-
mary structures and very different biological functions and uses:

Ozytocin

Primary structure: Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly-NH2
Function: It causes contraction of the uterus and it is adminis-
tered to induce childbirth

Vasopressin

Primary structure: Cys-Tyr-Phe-Gln-Asn-Cys-Pro-Arg-Gly-NH2
Function: It regulates the reabsorption of water from the urine
and it is administered in the treatment of diabetes

Ezample 2

Sickle cell anemia

Hemoglobin consists of 4 polypeptide chains:

2 chains « of 141 amino acid residues

2 [ chains of 146 amino acid residues

In patients with sickle cell disease, a residue of (polar) glutamic
acid in the /8 chain is replaced by a (non-polar) valine residue due
to a genetic error.
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Section of the 3 chain of hemoglobin:
Normal hemoglobin .... Val-His-Leu-Thr-Pro- Glu -Gly-Lys ....
Abnormal hemoglobin .... Val-His-Leu-Thr-Pro- Val -Gly-Lys ....

Start of the coding seguence

DMA CAC GTG GAC TaA GGA Cffc
sequence GTG CAC CTG ACT CCT GQGAG
¥

Aming acid : Ghitami
cequence  Valine Histidine Leucine Threonine Proline = ="
Mermal

DNA CAC BTG GAC TGA GGA cllc
sequence gY@ CAC C©TG ACT ccT afa

——

b

Amino acid B e ek e -

sequence :
Mutation Sickle red blood cells

Amino acids can be indicated with the whole name, with three letters or with
a single letter.

SECONDARY STRUCTURE
The secondary structure describes how regions of the protein are distributed
in space with each other. They are of two types: a-helix and pleated sheet-£.

In the a-helix structure, amino acids wrap around an imaginary axis
forming a helix. The helix skeleton is made up of carbon C and nitrogen N
atoms which form the peptide bonds while the R groups are located outside
the skeleton. The helix can have a right-handed or left-handed course.

A round of helix is 5.4 A (Angstrom) long and contains 3.6 amino acid
residues.
1A =0.1nm=1%10"1%m
This structure is stabilized by the presence of hydrogen bonds between the
oxygen atom O of the carboxylic group of the first amino acid residue and
the hydrogen H bonded to nitrogen N (involved in the peptide bond) of the
fourth amino acid residue.
The a-elics are positioned in the outer regions of the proteins.
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'?_.c — niI
@ “ 9
R NN
S, ; S _
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s j‘ @ . helix : ~ helix

A

»@

In the structure a sheet-/ the skeleton is a zig-zag plane.
The R groups protrude from the zig-zag structure alternating above-below.

Sldt‘ chasns
(above)
£ ":3*}?5"“3%”
Side chains

(below)

The sheets -3 are positioned in the inner regions of the proteins because they
are hydrophobic regions.

When several segments with configuration-3 are arranged next to each other,
the sheet- can be antiparallel or parallel.

e Antiparallel: there are folds of 180° formed from 4 amino acid residues.
Foldings of Type I: Proline is present in position 2 of amino acid
residues.

Folding of Type II: Glycine is present in position 3 of amino acid
residues.
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@ carbon
' Hydrogen
@ Oxygen
) Mitrogen \
@ Rgroup b A
Pro  T1ypel

The formation of these curves means that each subsequent sheet has
an opposite trend compared to the previous sheet.

The fundamental unit is 7 A long and the hydrogen bonds are straight
(in the figure they are blue).

The first sheet goes from left to right (N-terminal, C-terminal), the
next one goes from right to left (N-terminal, C-terminal).

e Parallel: the regions are arranged parallel, the sheets have the same
trend.
The fundamental unit is 6.5 A long and the hydrogen bonds are slightly
distorted.
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TERTIARY STRUCTURE
The tertiary structure describes how the whole protein is organized in space.
The protein can assume different tertiary structures but assume the one that
gives it more stability from an energetic point of view.
The tertiary structure is stabilized by bonds between R groups of amino acid
residues that are spatially close together.
ION BOND: between groups that have a net negative charge (residues of ly-
sine, arginine, histidine) and groups that have a net negative charge (residues
of glutamic acid, aspartic acid).
HYDROPHOBIC BOND: tendency of non-polar R groups to unite with each
other. Example: side chains of alanine, valine, leucine, isoleucine, phenylala-
nine.
DISULFIDE BRIDGE: A cysteine has a -SH group in R group.
After that the protein has assumed the tertiary structure, it may happen that
two -SH groups of two different cysteines are spatially close; they oxidize and
they form S-S bridges.

oM

o
cH;
o

&)

Hydrophobic
interaction

Hydrogen bridge
o

c=g
:

Hydrophobic f‘
interaction

lonic bend
o

» . "
NHy*tt O C !
| Disulfide s

5 1o |
| bridge

/’..é)— CHy
Il\ W
Hydrogen bridge Tertiary structure

$Tr1:d
PEp il bduambi
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QUATERNARY STRUCTURE
The quaternary structure describes how the different polypeptide chains orga-
nize and interact with each other in space through chemical bonds. Proteins
are classified into two main groups:
Fibrose: peptic chains arranged in long bundles or sheets.
(Examples: keratin, collagen)
Globular: folded chains with spherical or globular shapes.
(Examples: myoglobin and hemoglobin)
Structural differences: fibrous proteins have only one secondary structure
(this is always a a-elic) and the tertiary one is very simple, while the globu-
lar ones have different secondary structures.
Functional differences: fibrous proteins determine the resistance, form and
external protection of vertebrate cells, while globular ones have a regulatory
function.

Primary Secondary Tertiary Quaternary
structure structure structure structure
x _ 5 l
) o Y A~ 4 &
. -1
e | - B |
W = 5 "
Residues of aming acids O Helix Polypeptide chain Associated subunits
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