
Espressioni

Generazione di espressioni

{e1, e2, ...} is a list of elements.

Array[f, n] generates a list of length n, with elements f[i].
Array[f, {n1, n2, ...}] generates an n1 X n2 X ... array of nested lists, with
 elements f[i1, i2, ...].
Array[f, dims, origin] generates a list using the specified index origin (default 1).
Array[f, dims, origin, h] uses head h, rather than List, for each level of the array.

Range[imax] generates the list {1, 2, ..., imax}.
Range[imin, imax] generates the list {imin, ..., imax}.
Range[imin, imax, di] uses step di.

Table[expr, {imax}] generates a list of imax copies of expr.
Table[expr, {i, imax}] generates a list of the values of expr when i runs from 1 to
 imax.
Table[expr, {i, imin, imax}] starts with i = imin.
Table[expr, {i, imin, imax, di}] uses steps di.
Table[expr, {i, imin, imax}, {j, jmin, jmax}, ...] gives a nested list. The list
 associated with i is outermost.

Permutations[list] generates a list of all possible permutations of the elements
 in list.

Analisi delle espressioni

AtomQ[expr] yields True if expr is an expression which cannot be divided into
 subexpressions, and yields False otherwise.

ListQ[expr] gives True if expr is a list, and False otherwise.

expr[[i]] or Part[expr, i] gives the ith part of expr.
expr[[-i]] counts from the end.
expr[[0]] gives the head of expr.
expr[[i, j, ...]] or Part[expr, i, j, ...] is equivalent to expr[[i]] [[j]]
expr[[{i1, i2, ...}]] gives a list of the parts i1, i2, ... of expr.

Head[expr] gives the head of expr.

First[expr] gives the first element in expr.

Rest[expr] gives expr with the first element removed.

Last[expr] gives the last element in expr.

Length[expr] gives the number of elements in expr.

LeafCount[expr] gives the total number of indivisible subexpressions in expr.

Depth[expr] gives the maximum number of indices needed to specify any part of expr,
 plus one.

OrderedQ[h[e1, e2, ...]] gives True if the ei are in canonical order, and False
 otherwise.

Order[expr1, expr2] gives 1 if expr1 is before expr2 in canonical order, and -1
 if expr1 is after expr2 in canonical order. It gives 0 if expr1 is identical to
 expr2.

FreeQ[expr, form] yields True if no subexpression in expr matches form, and yields
 False otherwise.
FreeQ[expr, form, levelspec] tests only those parts of expr on levels specified by
 levelspec.

MemberQ[list, form] returns True if an element of list matches form, and False
 otherwise.
MemberQ[list, form, levelspec] tests all parts of list specified by levelspec.

Count[list, pattern] gives the number of elements in list that match pattern.
Count[expr, pattern, levelspec] gives the total number of subexpressions matching
 pattern that appear at the levels in expr specified by levelspec.

Espressioni / 1

Position[expr, pattern] gives a list of the positions at which objects matching
 pattern appear in expr.
Position[expr, pattern, levspec] finds only objects that appear on levels specified
 by levspec.

Manipolazione di espressioni

Append[expr, elem] gives expr with elem appended.

AppendTo[s, elem] appends elem to the value of s, and resets s to the result.

Prepend[expr, elem] gives expr with elem prepended.

PrependTo[s, elem] prepends elem to the value of s, and resets s to the result.

Insert[list, elem, n] inserts elem at position n in list. If n is negative, the
 position is counted from the end.
Insert[expr, elem, {i, j, ...}] inserts elem at position {i, j, ...} in expr.
Insert[expr, elem, {{i1, j1, ...}, {i2, j2, ...}, ...}] inserts elem at several
 positions.

Delete[expr, n] deletes the element at position n in expr. If n is negative, the
 position is counted from the end.
Delete[expr, {i, j, ...}] deletes the part at position {i, j, ...}.
Delete[expr, {{i1, j1, ...}, {i2, j2, ...}, ...}] deletes parts at several positions.

ReplacePart[expr, new, n] yields an expression in which the nth part of expr is
 replaced by new. ReplacePart[expr, new, {i, j, ...}] replaces the part at position
 {i, j, ...}. ReplacePart[expr, new, {{i1, j1, ...}, {i2, j2, ...}, ...}] replaces
 parts at several positions by new.

Take[list, n] gives the first n elements of list.
Take[list, -n] gives the last n elements of list.
Take[list, {m, n}] gives elements m through n of list.

Drop[list, n] gives list with its first n elements dropped.
Drop[list, -n] gives list with its last n elements dropped.
Drop[list, {n}] gives list with its nth element dropped.
Drop[list, {m, n}] gives list with elements m through n dropped.

Cases[{e1, e2, ...}, pattern] gives a list of the ei that match the pattern.
Cases[{e1, ...}, pattern -> rhs] or Cases[{e1, ...}, pattern :> rhs] gives a list of
 the values of rhs corresponding to the ei that match the pattern.
Cases[expr, pattern, levelspec] gives a list of all parts of expr on levels specified
 by levelspec which match the pattern.

DeleteCases[expr, pattern] removes all elements of expr which match pattern.
DeleteCases[expr, pattern, levspec] removes all parts of expr on levels specified by
 levspec which match pattern.

Select[list, crit] picks out all elements ei of list for which crit[ei] is True.
Select[list, crit, n] picks out the first n elements for which crit[ei] is True.

Join[list1, list2, ...] concatenates lists together. Join can be used on any set
 of expressions that have the same head.

Flatten[list] flattens out nested lists.
Flatten[list, n] flattens to level n.
Flatten[list, n, h] flattens subexpressions with head h.

Transpose[list] transposes the first two levels in list.
Transpose[list, {n1, n2, ...}] transposes list so that the nk-th level in list is
 the k-th level in the result.

Complement[eall, e1, e2, ...] gives the elements in eall which are not in any of
 the ei.

Intersection[list1, list2, ...] gives a sorted list of the elements common to all
 the listi.

Union[list1, list2, ...] gives a sorted list of all the distinct elements that
 appear in any of the listi.
Union[list] gives a sorted version of a list, in which all duplicated elements have
 been dropped.

Sort[list] sorts the elements of list into canonical order.
Sort[list, p] sorts using the ordering function p.

Espressioni / 2

Split[list] splits list into sublists consisting of runs of identical elements.
Split[list, test] treats pairs of adjacent elements as identical whenever applying
 the function test to them yields True.

Reverse[expr] reverses the order of the elements in expr.

RotateRight[expr, n] cycles the elements in expr n positions to the right.
RotateRight[expr] cycles one position to the right.
RotateRight[expr, {n1, n2, ...}] cycles elements at successive levels ni positions
 to the right.

RotateLeft[expr, n] cycles the elements in expr n positions to the left.
RotateLeft[expr] cycles one position to the left.
RotateLeft[expr, {n1, n2, ...}] cycles elements at successive levels ni positions
 to the left.

Normal[expr] converts expr to a normal expression, from a variety of special forms.

Espressioni / 3

