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Abstract

We prove that Stein surfaces with boundary coincide up to orientation preserving
diffeomorphisms with simple branched coverings of B4 whose branch set is a posi-
tive braided surface. As a consequence, we have that a smooth oriented 3-manifold
is Stein fillable iff it has a positive open-book decomposition.
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Introduction

Compact Stein surfaces with (strictly pseudoconvex) boundary play an impor-
tant role in the contact topology of 3-manifolds, due to the fact that their boundaries
carry natural tight contact structures, given by the complex tangencies.

It is worth remarking that, this is one of the only two known general ways
for producing tight contact structures, the other one being perturbation of taut
foliations (cf. [13]). On the other hand, Stein surfaces with boundary can also be
used to define invariants for fillable contact structures (see [16] and [28]).

A topological characterization of compact Stein surfaces has been given by
Eliashberg in terms of handle decompositions, by using the notion of Legendrian
surgery (cf. [10] and [16]). In [16], Gompf developed a Legendrian version of the
Kirby calculus on framed links, in order to construct and study fillable contact 3-
manifolds. In the same paper, he conjectured that the Poincaré homology sphere with
reversed orientation could not be Stein fillable. This conjecture has been proved in
[27] by Lisca. Successively, Ethnyre and Honda showed that the Poincaré homology
sphere with reversed orientation cannot carry any tight contact structure (see [14]).
However, we still have no general way for establishing whether a given 3-manifold
has such a contact structure or not.

In this paper we propose an alternative approach to the topology of Stein surfaces
with boundary, representing them as branched covers of B4. Namely, starting with



a Legendrian handle decomposition of X, the lifting surgery method introduced by
Hilden and Montesinos in [23] and [30], gives us a covering p : X → B4, whose
branch set is a non-singular ribbon (real) surface S ⊂ B4. Then, we can apply
the Rudolph’s braiding process to S (cf. [35]) in order to make S into a braided
surface in B2 × B2 5 B4. The crucial point is that, performing all the operations
in the proper way, the resulting braided surface is positive. By [34], this means that
we can assume S to be analytic. At this point, the Grauert-Remmert theory of
analytically branched coverings (see [7] or [18]) allows us to conclude that p itself
can be assumed analytic up to orientation preserving diffeomorphisms. Viceversa,
it is not difficult to prove that any analytical branched cover of B4 is orientation
preserving diffeomorphic to a Stein surface with boundary.

By composing the branched covering p with the projection B4 5 B2×B2 → B2,
we get a positive Lefschetz fibration f : X → B2. In fact, under some natural
restrictions, any Lefschetz fibration over B2 factors in such a way. This gives us a
further topological characterization of the compact Stein surfaces with boundary as
positive Lefschetz fibrations of B2. Looking at the boundary, we immediately get a
corresponding fillability criterion in terms of positive open-books.

The paper is organized as follows. In section 1 we prove some preliminary results
relating Lefschetz fibrations with coverings branched over braided surfaces. Section
2 is entirely devoted to prove our main theorem, that is the characterization of
compact Stein surfaces with boundary as branched coverings of B4 and as Lefschetz
fibrations over B2 (theorem 2.2). Finally, in section 3 we use this characterization
in order to obtain the above mentioned fillability criterion (theorem 3.4).

1. Lefschetz fibrations

Let X be a smooth oriented connected compact 4-manifold with (possibly emp-
ty) boundary and Y be a smooth oriented connected compact surface with (possibly
empty) boundary. A smooth map f : X → Y is called a Lefschetz fibration over Y
iff the following properties hold:

(a) f has finitely many singular values y1, . . . , yn ∈ Int Y (the branch points of f)
and the restriction of f over Y − {y1, . . . , yn} is a locally trivial fiber bundle
whose fiber F is an oriented compact surface with (possibly empty) boundary
(the regular fiber of f);

(b) for each i = 1, . . . , n, there is only one singular point xi ∈ Int X over the branch
point yi and the monodromy of a counterclockwise meridian loop around yi is
given by δεi

i , where δi is the right-handed Dehn twist along di ⊂ Int F and
εi = ±1 (xi is called positive or negative depending on εi).

We say that f is positive iff all its singular points xi are positive and that f is
allowable iff all the loops di are homologically non-trivial in F .

A Lefschetz fibration f : X → Y is completely determined, up to orientation
preserving diffeomorphisms, by the branch points y1, . . . , yn ∈ Int Y and by its re-
striction over Y − {y1, . . . , yn}. On the other hand, any locally trivial fiber bundle
over Y − {y1, . . . , yn} satisfying (a) and (b) uniquely extends to a Lefschetz fibra-
tion. In fact, the structure of f over a small disk Di centered at yi is given by
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the following commutative diagram, where: T (δεi
i ) is the mapping torus of δεi

i and
π : T (δεi

i ) → S1 is the canonical projection; the singular fiber Fyi
5 F/di has a

transversal self-intersection at xi, which is positive or negative depending on εi;
h and k are orientation preserving diffeomorphisms such that, denoting with
is,t : F → T (δεi

i ) × (0, 1] the canonical inclusion defined by is,t(x) = ([x, s], t) and
putting ks,t = k a is,t : F → Fh(s,t) ⊂ f−1(Di −{yi}), we have ks,t(di) → xi as t → 0.

T (δεi
i ) × (0, 1]

k−−−→ f−1(Di − {yi}) ⊂ f−1(Di) ⊃ Fyi�π×id
�

�f|

�

S1 × (0, 1]
h−−−→ Di − {yi} ⊂ Di ⊃ {yi}

For any i = 1, . . . , n, there are local complex coordinates (z1, z2) of X and z of
Y , respectively centered at xi and at yi, making f into the complex map (z1, z2) �→
z = z2

1 + z2
2 . Moreover, such coordinates can be chosen orientation preserving iff xi

is a positive singular point. In other words, f is locally a complex Morse function.
This fact could be used to get a natural handle decomposition of X. For a detailed
discussion of the topology of Lefschetz fibrations we refer to [17].

If Bd Y �= �O, the observations above say that a Lefschetz fibration f : X → Y
is uniquely determined, up to orientation preserving diffeomorphisms, by its mon-
odromy ϕf : π1(Y − {y1, . . . , yn}, ∗) → Map F and that ϕf can be an arbitrary
homomorphism satisfying the property (b).

For Y = B2, the monodromy ϕf can be represented by an arbitrary sequence
of Dehn twists δε1

1 , . . . , δεn
n along simple loops d1, . . . , dn ⊂ Int B2, giving the mon-

odromies of counterclockwise meridian loops around the branch points y1, . . . , yn,
which freely generate π1(B

2 − {y1, . . . , yn}, ∗).
In order to describe Lefschetz fibrations in terms of branched coverings, we

introduce the notion of braided surface in a product of surfaces (cf. [35] for the case
of B2 × B2).

Let Y and Z be smooth oriented connected compact surfaces. A regularly em-
bedded smooth compact surface S ⊂ Y × Z is a braided surface over Y iff the
restriction of the canonical projection πY |S : S → Y is a simple branched covering.

We observe that S is oriented as branched cover of Y and Bd S is an oriented
link in Bd Y × Z which intersects C × Z in a closed braid, for every component C
of Bd Y . Furthermore, πY |S has finitely many singular values y1, . . . , yn ∈ Int Y and
over each yi there is only one singular point si ∈ Int S for πY |S. We call s1, . . . , sn

the twist points of S.
For any twist point si of S, there are fiber preserving local complex coordinates

(w, z) of Y ×Z centered at si making S into the surface w = z2. We say that si is a
positive twist point iff such coordinates can be choosen orientation preserving (with
respect to the product orientation of Y × Z) and a negative twist point otherwise.
We call S a positive braided surface iff all its twist points are positive.

The following theorem on positive braided surfaces in B2 × B2 will be used in
the next section. Its proof is implicit in [34] (see remark 4.4 in [35] and observe that
any positive braided surface in B2 × B2 has a quasipositive band presentation).
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Theorem 1.1 (Rudolph). A braided surface S ⊂ B2 ×B2 is positive iff it is
isotopic to the intersection of a complex analytic curve with B2 × B2 ⊂ C2.

Now, we come to the relation between Lefschetz fibrations with fiber F over a
surface Y and branched coverings of products Y ×Z (typically Z 5 S2 for F closed
and Z 5 B2 for F bounded) with branch surfaces S ⊂ Y × Z braided over Y .

Proposition 1.2. Let Y and Z be smooth oriented connected compact sur-
faces and let p : X → Y × Z be a simple branched covering whose branch set is
a surface S ⊂ Y × Z braided over Y . Then, the composition f = πY a p : X → Y
is a Lefschetz fibration which has the same branch points of πY |S and one positive
(resp. negative) singular point over each positive (resp. negative) twist point of S.
Moreover, if Bd Z �= �O then the regular fiber of f has no closed component and f
is allowable.

Proof. Of course, f is regular at each regular point of p. Furthermore, given
x ∈ X singular point of p, we have p(x) ∈ S and Txf(TxX) = Tp(x)πY (Txp(TxX)) =
Tp(x)πY (Tp(x)S), hence x is a singular point of f iff p(x) is a twist point of S.

Now, let s1, . . . , sn ∈ S the twist points of S and y1, . . . , yn ∈ Y their projections
by πY . Then, f is regular over Y − {y1, . . . , yn} and, by compactness, it satisfies
property (a) of Lefschetz fibrations, the regular fiber F 5 f−1(y) with y �= y1, . . . , yn

being simple covering of Z 5 {y} × Z branched over the (transversal) intersection
with S, by the restriction of p.

On the other hand, since p is simple, over each singular value yi there is only
one singular point xi. In order to verify property (b) of Lefschetz fibrations, we have
to check that the monodromy around each yi is a Dehn twist.

Let (w, z) be local fiber preserving complex coordinates of Y × Z centered at
si and making S into the surface w = z2. We can assume that w is orientation
preserving on Y , so that t �→ w(t) = ρe2πit, with ρ > 0 sufficiently small, is a
counterclockwise parametrization of a simple loop li ⊂ Y around yi.

Then S ∩ (li × Z) is the closed braid in li × Z, corresponding to a half twist
around an arc a ⊂ {w(0)} × Int Z between two branch points of the restriction of p
over {w(0)} × Z, whose meridians have the same monodromy. Such a half twist is
right-handed (resp. left-handed) if si is a positive (resp. negative) twist point of S
and lifts to the right-handed (resp. left-handed) Dehn twist along the unique simple
loop d contained in p−1(a) ⊂ Int f−1(w(0)) 5 Int F (cf. [2], lemma 4.2), which
represents the monodromy of li.

Finally, assuming Bd Z �= �O, we have that each component of the regular fiber
F has non-empty boundary, since it is a branched covering of Z. Similarly, for the
loop d ⊂ F considered above, we have that each component of F −d has non-empty
boundary. Then, we can conclude that f is allowable if Bd Z �= �O. �

The following proposition shows that any allowable Lefschetz fibration over Y
whose fiber is connected with (possibly empty) connected boundary, can be obtained
as in proposition 1.2 from a quite special branched covering if BdY �= �O.

Proposition 1.3. Let f : X → Y be an allowable Lefschetz fibration with
regular fiber F . If F and Bd F are connected and Bd Y �= �O, there exists a 3-fold
simple branched covering p : X → Y × Z whose branch set is a surface S ⊂ Y × Z
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braided over Y , with Z 5 S2 if F is closed and Z 5 B2 otherwise, such that
f = πY a p.

Proof. First of all, since F and Bd F are connected, there exists a 3-fold simple
branched covering q : F → Z, with Z as in the statement, such that any Dehn twist
of F along a non-separating simple loop can be realized, up to isotopy, as the lifting
of a half twist around an arc in Z between two branch points of q, whose meridians
have the same monodromy (see [4] and remember that all the non-separating simple
loops in F are equivalent). Then, any element of MapF can be represented by the
lifting of a diffeomorphism of Z onto itself isotopic to the identity, since Dehn twists
along non-separating simple loops generate MapF .

Let y1, . . . , yn ∈ Int Y be the branch points of f and A1, . . . , An ⊂ Y be disjoint
disks such that yi ∈ Int Ai and Ai ∩ Bd Y is an arc in Bd Ai, for every i = 1, . . . , n.
Then, the restriction of f over Y0 = Cl(Y − (A1 ∪ . . .∪An)) is a locally trivial fiber
bundle.

Given a band presentation Y0 5 B2 ∪ H1 . . . ∪ Hm with bands (= 1-handles)
H1, . . . , Hm, we construct a branched covering p0 : X0 → Y0 × Z as follows: start
with the covering idY × q : Y0 × F → Y0 × Z; cut each Hj × F along tj × F and
each Hj × Z along tj × Z, where tj is a transversal arc for the band Hj; glue
them back respectively by idtj×ϕf (ej) and idtj×hj, where ϕf (ej) ∈ Map F is the
monodromy of a simple loop ej which goes once through Hj and hj : Z → Z is
a homeomorphism isotopic to the identity which lifts to ϕf (ei) by means of q. We
observe that the branch set of p0 is a surface S0 ⊂ Y0 × Z braided over Y0 without
any twist point.

In order to extend p0 to a branched covering p : X → Y , we consider a branched
covering r : W → B2×Z whose branch set is a surface R ⊂ B2×Z braided over B2

with only one positive twist point over 0 and whose restriction over S1
−×Z coincides

with idS1
−
×q. As we have seen in the proof of proposition 1.2, the composition

πB2 a r is a Lefschetz fibration branched over 0 with regular fiber F , such that the
monodromy of a counterclockwise meridian loop around 0 is a right-handed Dehn
twist along a non-separating simple loop δ ⊂ Int F .

Now, for any i = 1, . . . , n, we denote by ai the arc Ai ∩ Y0 ⊂ Bd Ai and put
ϕf (li) = δεi

i , where li ⊂ Ai is a counterclockwise meridian loop around yi, δi is the
right-handed Dehn twist along di ⊂ Int F and εi = ±1. Since f is allowable, di

cannot separate F , so there exist diffeomorphisms ki = k′
i × k′′

i : B2 × Z → Ai × Z
and k̂i = k′

i × k̃′′
i : S1

−×F → ai ×F such that: k′
i preserves or inverts the orientation

according to εi; k′
i(S

1
−) = ai; k′′

i is orientation preserving and lifts to k̃′′
i with respect

to q; k̃′′
i (d) = di. Then, assuming that the arcs ai do not meet the 1-handles Hj, we

can glue n copies of r to p0, by means of the diffeomorphisms ki| : S1
− ×Z → ai ×Z

and k̂i.

Calling p the branched covering of Y obtained in this way, we have that the
branch set of p is the surface S = S0 ∪ k1(R) ∪ . . . ∪ kn(R) ⊂ Y × Z braided over
Y and moverover πY a p is a Lefschetz fibration whose branch points a monodromy
coincide with that ones of f , by proposition 1.2 and its proof. So, up to orientation
preserving diffeomorphisms, πY a p = f and in particular the total space of p is
X. �
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Remark 1.4. Proposition 1.3 does not hold in general if Bd Y = �O (see [15]
for hyperelliptic Lefschetz fibrations). In fact, to deal with this case, we should allow
the surface S to be only partially braided and to have node and cusp singularities
(cf. [33]). The connection requirement for F and Bd F could perhaps be removed,
by considering branched coverings of order greater than 3.

We conclude this section by observing that, for a Lefschetz fibration f : X → B2,
the condition of having connected fiber with connected boundary, does not imply
any restriction on the total space X. This fact will be needed in the next section.

Proposition 1.5. If f : X → B2 is a Lefschetz fibration over B2, then the
regular fiber of f is connected and there exists a Lefschetz fibration g : X → B2

whose fiber has connected boundary. Moreover, for f allowable and/or positive, we
can take g allowable and/or positive as well.

Proof. The connection of F follows immediately from the connection of X, since
the monodromy of f is generated by Dehn twists, so it preserves the components
of F . We also observe that, for the same reason, the monodromy of f fixes the
boundary of F .

Now, if Bd F = �O or Bd F is already connected, we can set g = f . Otherwise, in
order to connect the boundary of F , we consider the following plumbing operation
for Lefschetz fibrations with connected bounded fiber, which is analogous to the
operation (A) introduced by Harer in [22] for open-book decompositions.

Let F ′ = F ∪H the surface obtained by gluing an oriented band H to F (we are
assuming Bd F �= �O) and d ⊂ Int F ′ be a simple loop which goes once through H
(we are also assuming F connected). Then, we consider the new Lefschetz fibration
f ′ : X ′ → Y with regular fiber F ′, branch points y1, . . . , yn, yn+1 ∈ Int B2 and
respective monodromies δε1

1 , . . . , δεn
n , δ, where y1, . . . , yn are the branch points of f ,

δε1
1 , . . . , δεn

n are the respective monodromies for f thought as Dehn twists of F ′ and
δ is the right-handed Dehn twist along d.

By the definition of f ′, we get X ′ 5 X, in fact X ′ can be obtained by adding to
X a cancelling pair of handles: one 1-handle B2 × H glued to B2 × Bd F ⊂ Bd X
(remember that the monodromy of f fixes Bd F ), due to the change of the fiber, and
one 2-handle attached along {s} × d ⊂ {s} × G ⊂ Bd(X ∪ (B2 × H)) with s ∈ S1,
due to the new branch point yn+1 (cf. [15] and [24]). On the other hand, if BdF is
not connected and the band H joins two different components of Bd F , then Bd F ′

has one component less than Bd F and d is non-separating in F ′.
Then we can get the required Lefschetz fibration g from f , by iterating the

plumbing operation, until the boundary of the fiber becomes connected. �
Remark 1.6. For a Lefschetz fibration f = πB2 a p, with p : X → B2 × B2

simple covering branched over a braided surface S ⊂ B2×B2, a plumbing operation
on f corresponds to a stabilization of S, consisting in the addition of one sheet
connected to S by means of one positive twist point.

2. Stein surfaces

We recall that, a smooth real-valued function f : X → R on a complex mani-
fold X is called plurisubharmonic (resp. strictly plurisubharmonic) iff the complex
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Hessian Hf = (∂2f/∂zi∂z̄j) is everywhere positive semidefinite (resp. definite) for
any local complex coordinates (z1, . . . , zn). Of course, both these properties are in-
variant under biholomorphisms of X. Moreover, plurisubharmonicity (but not strict
plurisubharmonicity) is preserved under composition with holomorphic functions on
the right and with non-decreasing convex functions on the left (see [20] or [31]).

A Stein surface is a non-singular complex surface X which admits a proper
strictly plurisubharmonic function f : X → [0, +∞) such that Bd X is a level set.

If X ⊂ Cn is a non-singular complex surface properly embedded in Cn, then
the restriction to X of the function z �→ |z|2 is a proper strictly plurisubharmonic
function, hence X is a Stein surface. In this way we get all the Stein surfaces without
boundary, up to biholomorphisms, since any Stein surface without boundary can be
properly holomorphically embedded in some Cn (see [18] or [20]).

If X is a Stein surface without boundary and f : X → [0, +∞) is a proper
strictly plurisubharmonic function, then the sublevel set f−1([0, c]) is a compact
Stein surface with boundary f−1(c), for any regular value c > 0. Any compact Stein
surface has non-empty boundary and can be embedded in a Stein surface without
boundary as a sublevel set of some proper plurisubharmonic function as above.

Any Stein surface X has a (possibly infinite) handle decomposition, induced by
a plurisubharmonic Morse function, with handles of indices ≤ 2 (see [29]).

In particular, for X compact we get X 5 X1 ∪ H1 ∪ . . . ∪ Hm, where X1 is
obtained by attaching 1-handles to B4 and the Hi’s are 2-handles attached to X1.
It turns out that the Hi’s are attached to X1 in a quite special way. In fact, the
attaching knot Ki ⊂ Bd X1 of each 2-handle Hi is Legendrian with respect to the
standard contact structure of BdX1 5 #n S1 × S2 and the attaching framing is the
Legendrian framing of Ki with one left-handed twist added (see [16] or [17] for more
details).

We call Legendrian such a 2-handle Hi. For our aims, it will suffice to know how
to represent Legendrian 2-handles in terms of framed links. The translation in the
language of framed links is widely discussed in [16] and [17], so we limit ourselves
to describe the final form of the resulting framed link.

Figure 1.

We consider first decompositions without any 1-handles. In this case, the link
K1 ∪ . . .∪Km ⊂ S3 can be represented by a front projection, that is a link diagram
with horizontal cusps instead of vertical tangencies, such that at each crossing the
arc with most negative slope crosses in front (cf. figure 1). Then, the Legendrian
framing of Ki is given by the blackboard framing associated to the diagram with
one left-twist added for each right cusp (see [9]).
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In the general case, we represent the 1-handles by dotted circles stacked over
the front projection of a Legendrian tangle, in such a way that the diagram of the
link K1, . . . , Km ⊂ #n S1×S2 is obtained by connecting the endpoints of the tangle
by means of parallel arcs, each one of which pass once through a dotted circle (cf.
figure 2). Again the Legendrian framing of Ki is given by the blackboard framing
associated to the diagram with one left-twist added for each right cusp.

Legendrian
tangle

Figure 2.

This way of representing Legendrian 2-handles is the one suggested in [16],
starting from a Legendrian link diagram in standard form (cf. definition 2.1 of [16]
and the subsequent discussion at page 634).

In order to get a more convenient representation for our purpose, we modify the
handle decomposition by twisting once negatively each 1-handle. After this change,
all the diagram can be drawn as a front projection with some arcs passing through
the dotted circles, the Legendrian framing still being the blackboard framing with
one left-twist added for each right cusp (cf. figure 3).

The following theorem says the all the diagrams considered above do in fact
represent handle decompositions of Stein surfaces. The proof of this fact is implicitly
contained in [10] (see also [16]).

Theorem 2.1 (Eliashberg). A smooth oriented compact 4-manifold X with
boundary is a Stein surface, up to orientation preserving diffeomorphisms, iff it has
a handle decomposition X1 ∪H1 ∪ . . . ∪Hm, where X1 consists of 0- and 1-handles
and the Hi’s are Legendrian 2-handles attached to X1.

Now, we come to the main theorem of this paper, which characterizes compact
Stein surfaces in terms of branched coverings and Lefschetz fibrations. For proving
it, we will use the fact the any compact Stein surface has a handle decomposition
as in theorem 2.1, but not the viceversa (cf. remark 2.3).
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Legendrian
tangle

Figure 3.

Theorem 2.2. Given a smooth oriented connected compact 4-manifold X with
boundary, the following statements are equivalent up to orientation preserving dif-
feomorphisms:
(a) X is a Stein surface;
(b) X is an analytic branched covering of B4;
(c) X is a covering of B2 × B2 branched over a positive braided surface;
(d) X is a positive allowable Lefschetz fibration over B2 with bounded regular fiber.

Proof. (b) ⇒ (a). Given an analytic branched covering p : X → B4, we have
that Int X is a Stein surface without boundary, since the restriction of p to Int X is
a finite holomorphic map (see [19], p. 125). Let f : Int X → R be a proper strictly
plurisubharmonic function and g : Int X → R be the plurisubharmonic function
defined by g(x) = 1/(1−‖p(x)‖2). By the transversality of the branch set of p with
respect to S3, we have X 5 g−1([0, c]) for c > 0 (regular value) sufficiently large.
Now, the function h = g + εf is proper and strictly plurisubharmonic on IntX for
every ε > 0. By choosing ε sufficiently small, we have also X 5 h−1([0, c]), hence X
is a Stein surface with boundary.

(c) ⇒ (b). Let p : X → B2 × B2 a covering branched over a positive braided
surface S ⊂ B2 × B2. By theorem 1.1, p is analytically branched (see [7] for the
definition). Then, by a theorem of Grauert and Remmert [18] (cf. [7]), p is a true
analytic covering of B2 × B2 5 B4.

(d) ⇒ (c). This implication follows immediately from propositions 1.5 and 1.3.
(a) ⇒ (d). Let X be a Stein surface with boundary. By proposition 1.2, it is

enough to find a simple branched covering p : X → B2 × B2, whose branch set is a
positive braided surface. We start with a handle decomposition X1 ∪H1 ∪ . . .∪Hm,
where X1 consists of 0- and 1-handles and the Hi’s are Legendrian 2-handles at-
tached to X1. In order to make the proof easier to read, we consider first the special
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case of one 2-handle attached to B4. This allows us to explain the crucial ideas of the
proof, avoiding many technical details. Then, we show how to deal simultaneously
with different 2-handles and how to work the presence of 1-handles.

Case 1: no 1-handles and one 2-handle. In this case we have X 5 B4 ∪ H,
where H is a Legendrian 2-handle. Let K ⊂ S3 the Legendrian attaching knot of H.
Then, K can be represented by a front projection diagram D as described above. An
example of such a diagram is depicted in figure 4; all the diagrams in the following
figures 5, 6, 9 and 12 have to be considered as successive modifications of this one.

Figure 4.

First of all, we smooth all the cusps and add a negative kink at each right one.
In this way, we get a new diagram E of K (in fact of a transversal knot parallel to
K, cf. [11]) whose blackboard framing represents the Legendrian framing of K (see
figure 5).

Figure 5.

Then, we redraw E as a polygonal diagram with smoothed corners and edges
of slope +1 or −1, paying attention to not introduce local minima or maxima for
the abscissa other than the ones coming from cusps, and rotate everything of −π/4
radians. The resulting diagram F (see figure 6) has the following properties: all the
edges of F are horizontal or vertical; at each crossing the vertical edge crosses in
front; any vertical edge belongs to one of the three types shown in figure 7, depending
on the local structure of F in a neighborhood of it.

Finally, we apply to F the moves described in figure 8, in order to get a new
diagram G, satisfying the same properties of F , with all the vertical edges of types
1 and 3 respectively in the left-most and the right-most positions. Of course, also G
is a diagram of K (up to smooth equivalence) whose blackboard framing represents
the Legendrian framing of K.

The vertical edges of the types 1 and 3 come respectively from the left cusps
and the right cusps of the diagram D. Hence, putting c = #(left cusps of D) =
#(right cusps of D), we have exactly c vertical edges of type 1 and c vertical
edges of type 3. Let V1, . . . , V2c be all such edges, numbered starting from the
uppermost one of type 1 and following the orientation of the diagram which in-
duces on it the up-down orientation. We can assume that G has been constructed in
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such a way that, going from left to right, we have in the order V1, V3, . . . , V2c−1 on
the left side of G and V2, V4, . . . , V2c on the right side of G (see figure 9).

Now, we consider the simple branched covering p0 : B2 × B2 → B2 × B2 with
2c + 1 sheets labelled from 0 to 2c, whose branch set consists of disks D1, . . . , D2c

parallel to the second factor and whose monodromy around Di is (i−1 i), for every
i = 1, . . . 2c. We think D1, . . . , D2c as parallel disks in R3 ⊂ S3 = Bd B4 5 B2 × B2

with interiors pushed inside B4 and we represent their boundaries as vertical lines
L1, . . . , L2c in the diagram. Furthermore, we assume that: K ∩ D1 = V1 ⊂ L1 and
K ∩ Di = �O for i > 1; Li lies immediately on the right (resp. left) of Vi for i odd
(resp. even); G crosses in front of Li at all the crossings except the upper (resp.
lower) one near to Vi for i > 1 odd (resp. even), as shown in figure 10.

Let V ′
1 , . . . , V

′
2c be new vertical edges with the following properties: V ′

i is collinear
with Vi, for any i = 1, . . . , 2c; all the V ′

i ’s lie above all the Vj’s; the projections of
the edges V ′

2 , . . . , V
′
2c on L1 have disjoint interiors and their union coincides with

V ′
1 ; the bottom end of V ′

i and the top end of V ′
i+1 have the same ordinate, for any

i = 2, . . . , 2c − 1.

Then, we join the V ′
i ’s by horizontal edges, in order to get a trivial knot diagram

linked with the Li’s as shown in figure 11, where the horizontal edges crosses behind
Li at all the crossings except the lower one near V ′

i and the lowermost one too if i
is odd, for any i > 1.

Finally, we connect this diagram with G by means of a vertical band as show in
figure 12, in such a way that the resulting diagram H is again a diagram of K inter-
secting L1 along an arc and the corresponding blackboard framing still represents
the Legendrian framing of K.

Let A ⊂ K be the arc represented by Cl(H − L1). Then p−1
0 (A) is the disjoint

union of 2c − 1 arcs and a knot K̃ ⊂ S3 equivalent to K by an ambient isotopy of
S3, which makes the lifting of the blackboard framing along A into the Legendrian
framing of K with one left-twist added. In fact, by unfolding the sheets of p0 we
get a diagram of K̃, which is the connected sum of a copy of H in the sheet 0
with a trivial loop going forth and back in the other sheets. Moreover, the unfolding
process, applied to the lifting of the blackboard framing along A, gives us a framing
which coincides with the blackboard one except for a right (resp. left) half-twist
for each vertical segment Vi or V ′

i with i = 2, . . . , 2c odd (resp. even). The knot K̃

Figure 6.
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type 1 type 2 type 3

Figure 7.

Figure 8.

obtained starting from figure 12, together with the lifting of the blackboard framing,
is represented in figure 13.

At this point, following Hilden and Montesinos, we can apply lemma 3 of [23]
to the branched covering p0|S3 : S3 → S3 and the symmetric (with respect to
p0|S3) framed knot K̃, in order to attach the Legendrian 2-handle H to the covering
space B4 5 B2 × B2 of p0. In this way we obtain a (2c + 1)-fold simple branched
covering p : X → B2 × B2, whose branch set and monodromy coincide with the
ones of p0, except for the attachment to D1 of a ribbon band B, which represents
the blackboard framing along A. Denoting by F1 ⊂ B2 × B2 the ribbon annulus
resulting from this surgery on D1, the branch set of p is the regularly embedded

V1

V2

V3

V4

Figure 9.
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Figure 10.

V ′
1

V ′
2

V ′
4

V

V ′
3

V ′
2c−1 ′

2c

L1 L2L3 L4L2c−1 L2c

Figure 11.

surface F1 ∪D2 ∪ . . .∪D2c ⊂ B2 ×B2 (see figure 14 for the branch set arising from
the diagram of figure 12).

To conclude this part of the proof, we see that the branch set of p is isotopically
equivalent to a positive braided surface (over the second factor). In fact, D2∪. . .∪D2c

is already braided (without any twist point) and F1 can be made into a braided
surface by adapting the Rudolph’s braiding process (see [35]) in such a way that all
the Di’s are left fixed. Moreover, due to the special form of F1, all the twist points
arising in the process turn out to be positive.

Namely, we deform the parts of the band B corresponding to vertical edges of
A of types 1, 2 and 3 (including the V ′

i ’s with i odd), one by one from left to right,
to new disks parallel to the Di’s, successively putted in front of the previous ones,
as shown in figure 15.

After all these deformations have been performed, we are left with a certain
number of parallel disks and bands between them (in particular, some of such bands
correspond to the edges V ′

i with i even). All such bands have the form depicted in
the left part of figure 16 (up to conjugation), each one being linked to an arbitrary
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V ′
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V ′
3

V ′
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Figure 12.

sheet 0sheet 1sheet 2sheet 3sheet 4

Figure 13.

number (possibly none) of vertical lines. The right part of figure 16 shows how such
a band can isotoped to a braided one with a positive twist point (cf. [35]).

Case 2: no 1-handles. This time we have X 5 B4 ∪ H1 ∪ . . . ∪ Hm, for some
Legendrian 2-handles H1, . . . , Hm. Let D be a front projection of the Legendrian link
K = K1 ∪ . . .∪Km ⊂ S3, where Kj is the attaching knot of Hj. New diagrams E , F
and G of K can be obtained starting from D as in case 1; we use the subscript j for
the part of a diagram corresponding to Kj. Then, putting cj = #(left cusps of Dj) =
#(right cusps of Dj) and sj = c1 + . . . + cj, we denote by V1, . . . , V2sm the vertical
edges of types 1 and 3 of G.

We assume the Vi’s and the Kj’s numbered in such a way that: V2sj−1+1, . . . , V2sj

belong to Gj and are ordered as in case 1 (starting from the uppermost of type 1),
for any j = 1, . . . , m; the first edges of the Gj’s have increasing indices from bottom
to top, that is we have in the order V1, V2s1+1, . . . , V2sm−1+1. We also assume the Vi’s
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L1 L3 L2 L4

Figure 14.

placed so that, going from left to right, we have in the order V1, V2s1+1, . . . , V2sm−1+1

V3, V5, . . . , V2s1−1, . . . , V2s1+3, V2s1+5, . . . , V2s2−1, . . . , V2sm−1+3 V2sm−1+5, . . . , V2sm−1 on
the left side of G and V2, V4, . . . , V2sm on the right side of G.

Then, we consider the simple branched covering p0 : B2 × B2 → B2 × B2 with
2sm+1 sheets labelled from 0 to 2sm, whose branch set consists of disks D1, . . . , D2sm

parallel to the second factor and whose monodromy around Di is (0 2sj+1) if i =
2sj + 1 and (i−1 i) otherwise. As above, we think the Di’s as parallel disks in
R3 with the interiors pushed inside B4 and represent their boundaries as vertical
lines L1, . . . , L2sm in the diagram. Furthermore, we assume that: K ∩ D2sj−1+1 =
V2sj−1+1 ⊂ L2sj−1+1, for any j = 1, . . . , m; K ∩ Di = �O for all the other Di’s; the
positions of the Li’s and the crossings of G with them are as in case 1.

Finally, we change each Gj into a new diagram Hj, by the same construction
we have performed in the previous case on the entire diagram G for obtaining H.
Thanks to the choices made above about the position of the Vi’s, we can do that
without creating any extra crossing. In other words, the new parts of the diagram,
representing the unknots and the bands connecting them with the Kj’s, do not cross
each other nor the remaining part of the old diagram G. Moreover, we let the unknot
diagram arising from Gj cross in front of all the Li’s with i �= 2sj−1 + 1, . . . , 2sj.

In this way, we get a new diagram H = H1 ∪ . . . ∪Hm of the link K, such that
each Hj meets L1 ∪ . . . ∪ L2sm along an arc in L2sj−1+1 and it is a diagram of Kj

whose blackboard framing represents the Legendrian framing of Kj (see figure 17
for the diagram H obtained starting with the diagram D of figure 1).

Let A = A1∪. . .∪Am, where Aj ⊂ Kj is the arc represented by Cl(Hj−L2sj−1+1).
Then, p−1

0 (A) is the disjoint union of some arcs and a link K̃ ⊂ S3 equivalent to
K by an ambient isotopy of S3, which makes the lifting of the blackboard framing
along each Aj into the Legendrian framing of Kj with one left-twist added. We can
prove this fact as in case 1, after observing that, as in that case, K̃ is essentially
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Figure 15.

Figure 16.

contained in the sheet 0, being the component K̃j of K̃ over Kj contained in the
sheets 0, 2sj−1 + 1, . . . , 2sj, so that different K̃j’s interact only in the sheet 0.

In order to get a (2sm + 1)-fold simple branched covering p : X → B2 × B2, we
modify p0 by attaching to each disk D2sj−1+1 a ribbon band Bj, which represents the
blackboard framing along Aj and is disjoint from the other Di’s. Then, the branch
set of p is a regularly embedded surface in B2 ×B2, consisting of 2sm −m disks and
m annuli, that can be made into a positive braided surface, by the same method
used in case 1.

General case. Let X = X1 ∪ H1 ∪ . . . ∪ Hm, where X1 is obtained attaching n
1-handles to B4 and the Hj’s are Legendrian 2-handles. We represent such handle
decomposition by a diagram D as in figure 3 and we get diagrams E and F of
K as in the previous cases, expanding the dotted circles behind the diagram and
representing them by dotted vertical lines. So, F crosses in front of these vertical
lines at all the crossings, except the ones corresponding to passages of the link K
through the 1-handles, as shown in figure 18.
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Then, we push away from F all the vertical edges of type 1 and 3 (including
the ones needed to realize the arcs which go through the 1-handles), by using the
moves of figure 8. In this way, we get a diagram G as in the previous case 2. We
also assume such vertical edges V1, . . . , V2sm , as well as the subdiagrams G1, . . . ,Gm,
numbered and placed as in that case.

Now, let p0 : B2 × B2 → B2 × B2 the (2sm + 1)-simple branched covering
constructed as in case 2, starting from the actual diagram G, without taking into
account the dotted components. In order to make p0 into a simple branched covering
p1 : X1 → B2 × B2, we add to it n sheets labelled from 2sm + 1 to 2sm + n and
2n branch disks D2sm+1, . . . , D2sm+2n parallel to the previous ones, whose meridians
have monodromies (0 2sm+1), (0 2sm+1), . . . , (0 2sm+ n), (0 2sm+ n). Assuming
also these new disks as parallel disks in R3 ⊂ B2 × B2 with the interiors pushed
inside B4, we can represent their boundaries in the diagram by 2n vertical lines
L2sm+1, . . . , L2sm+2n.

We think the k-th 1-handle of X1, being realized by the (2sm + k)-th sheet
together with the pair of branch disks D2sm+2k−1, D2sm+2k (cf. [30]). Then, we draw
the lines L2sm+2k−1 and Lsm+2k in correspondence of the k-th dotted vertical line
from the left in figure 18, letting a horizontal edge of G cross in front of them iff it
crosses in front of such dotted line (see figure 19).

At this point, we construct another diagram H of K, by modifying G as in case
2 and letting all the new horizontal edges introduced in the construction cross in
front of the vertical lines L2sm+1, . . . , L2sm+2n.

Finally, we define the disjoint union of arcs A ⊂ S3 as above and see, in the same
way, that p−1

1 (A) is the disjoint union of some arcs and a link K̃ ⊂ X1 equivalent to
K and that the blackboard framing along each Aj lifts to the right framing of K̃j.
Hence, by attaching to each disk D2sj−1+1 a ribbon band Bj as above, we change p1
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F

Figure 18.

into a (2sm +n+1)-fold simple branched covering p : X → B2×B2. The branch set
of p is a regularly embedded surface in B2 × B2, consisting of 2sm + 2n − m disks
and m annuli, that can be made into a positive braided surface, again by the same
method used in case 1. �

Remark 2.3. In proving the implication (a) ⇒ (d), we used the hypothesis
only to guarantee the existence of a Legendrian handle decomposition. Then, our
proof of theorem 2.2 also provides a new proof of the “if” part of theorem 2.1.

Moreover, we observe that the positivity condition in (c) and (d) is directly
related to the framing properties of Legendrian handles. In fact, by forgetting such
conditions, we have that: for a 4-manifold as in the statement, having a handle
decomposition with handles of indices ≤ 2 is equivalent to being a covering of
B2 × B2 branched over a braided surface or a Lefschetz fibration over B2 with
bounded regular fiber (cf. [21] or [17]).

3. Stein fillability

In this section we apply our main theorem in order to characterize Stein fillable
3-manifolds in terms of open-books. First of all, we briefly recall some definitions
and basic facts.

A smooth oriented closed 3-manifold M is called Stein fillable iff it is the ori-
ented boundary of a compact Stein surface X (up to orientation preserving diffeo-
morphisms). By [5], any strictly pseudoconvex boundary of a compact complex sur-
face is Stein fillable. Stein fillability is relevant in the context of contact topology of
3-manifolds, since the natural contact structure on M = Bd X, given by the complex
tangencies, turns out to be tight (see [11] or [16]). The Eliashberg’s characterization
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of Stein surfaces (theorem 2.1) has been exploited by Gompf in [16] for producing
several families of fillable 3-manifolds, given in terms of framed links. Using Seiberg-
Witten theory, Lisca proved in [27] that the Poincaré homology sphere with reversed
orientation is not Stein fillable (in fact, not symplectically semi-fillable), as already
conjectured in [16]. Theorem 3.4 below, together with the Harer’s equivalence the-
orem for fibered links (see [22]), could enable us to define an effectively computable
obstruction to Stein fillability.

On the other hand, given a smooth oriented connected compact surface F with
non-empty boundary and a mapping ϕ ∈ Map(F, Bd F ), the open-book with page
F and monodromy ϕ is the space Mϕ = T (ϕ) ∪k Bd F , where T (ϕ) is the mapping
torus of ϕ and the attaching map k : T (ϕ|Bd F ) 5 Bd F × S1 → Bd F is the
projection onto the first factor. It turns out that Mϕ is a smooth oriented closed
3-manifold (well defined up to orientation preserving diffeomorphisms) and that
Lϕ = Bd F ⊂ Mϕ (the binding of the open-book) is a fibered link in Mϕ (cf. [22]).
In fact, any such a 3-manifold M is orientation preserving diffeomorphic to some
open-book with connected binding (see [2]). We say that Mϕ is a positive open-book
iff its monodromy ϕ is a product of right-handed Dehn twists.

The following propositions tell us that the open-books coincide, up to orientation
preserving diffeomorphisms, with the boundaries of Lefschetz fibrations over B2.

Proposition 3.1. Let f : X → B2 be a Lefschetz fibration whose regular fiber
F has non-empty boundary. Then Bd X is orientation preserving diffeomorphic to
the open-book Mϕ with page F and monodromy ϕf (l) = ϕ, where l is the counter-
clockwise loop along S1.
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Proof. Let y1, . . . , yn ∈ Int B2 the branch points of f and l1, . . . , ln meridian
loops around them, such that l1 . . . ln = l in π1(B

2 − {y1, . . . , yn}, ∗). Putting T =
f−1(S1), we have that the restriction f|T : T → S1 is a locally trivial bundle with
fibre F and monodromy ϕf a i∗, where i∗ is the homomorphism induced by the
inclusion of S1 into the complement of the branch points B2−{y1, . . . , yn}. Then, T
is orientation preserving diffeomorphic to the mapping torus T (ϕ) of the mapping
ϕ = ϕf (l) = ϕf (l1) . . . ϕf (ln) ∈ Map(F, Bd F ). On the other hand, T ′ = Cl(Bd X −
T ) 5 B2 × Bd F , since the restriction f|T ′ : T ′ → B2 is a (locally) trivial bundle
with fiber Bd F . So, we conclude that Bd X = T ∪Bd T ′ 5 Mϕ. �

Proposition 3.2. For any open-book Mϕ with page F , there exists a Lefschetz
fibration f : X → B2 with regular fiber F , such that Bd X 5 Mϕ. Moreover, we can
choose f allowable if Bd F is connected and positive if Mϕ is a positive open-book.

Proof. Given an open-book Mϕ with page F , we can write ϕ = δε1
1 . . . δεn

n , with
δi right-handed Dehn twist along di ⊂ Int F and εi = ±1. Then, fixed y1, . . . , yn ∈
Int B2 and l1, . . . , ln meridian loops around them, such that l1 . . . ln = l in π1(B

2 −
{y1, . . . , yn}, ∗), we consider the Lefschetz fibration f : X → B2 determined by
the branch points y1, . . . , yn and the monodromies ϕf (li) = δεi

i for i = 1, . . . , n
(cf. section 1). By proposition 3.1, we have BdX 5 Mϕ.

For the second part of the proposition, observe that we can choose the di’s non-
separating if Bd F is connected and the εi’s positive if Mϕ is a positive open-book.
The following lemma 3.3 guarantees that such choices can be made simultaneously.
�

Lemma 3.3. Let F be an oriented connected compact surface with non-empty
connected boundary and let δ be the right-handed Dehn twist along a simple loop
d ⊂ Int F parallel to Bd F . Then, there exist right-handed Dehn twists δ1, . . . , δn a-
long non-separating simple loops d1, . . . , dn, such that δ = δ1 . . . δn in Map(F, Bd F ).

Proof. Looking at the double branched covering p : F → B2 shown in figure 20,
we see that d covers twice the loop e ⊂ Int B2 encircling all the 2g+1 branch points,
where g denotes the genus of F . Then δ is the lifting of a double right-handed twist
along e. By expressing the corresponding braid in terms of the standard generators,
it can be easily realized that δ = (α1β1 . . . αgβg)

4g+2, where αi and βi are the right-
handed Dehn twists along the loops ai and bi depicted in the figure. �

Now, we are ready to give our fillability criterion.

Theorem 3.4. A smooth oriented closed 3-manifold is Stein fillable iff it is
orientation preserving diffeomorphic to a positive open-book.

Proof. By theorem 2.2 and proposition 3.1, the oriented boundary of any com-
pact Stein surface is orientation preserving diffeomorphic to a positive open-book.
Viceversa, given a positive open-book Mϕ, we can assume, up to the plumbing op-
eration (A) introduced in [22] (cf. proof of proposition 1.5 above), that the binding
of Mϕ is connected. Then, by proposition 3.2 and theorem 2.2, Mϕ is the oriented
boundary of a compact Stein surface. �
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Corollary 3.5. For any smooth oriented closed 3-manifold M and any fibered
knot K ⊂ M , there is a (possibly trivial) surgery along K which makes M into a
Stein fillable 3-manifold.

Proof. Let Mϕ be an open-book with page F and binding Lϕ ⊂ Mϕ, such that
(M, K) is orientation preserving diffeomorphic to (Mϕ, Lϕ). Since Map(F, Bd F ) is
generated by Dehn twists along non-separating simple loops, we can express ϕ as
a product of such twists. Now, by lemma 3.3, any left-handed twist along a non-
separating loop can be obtained as a product of some right-handed twists and of δ−1.
In fact, using the notations of lemma 3.3, this is true for the loop δ−1

1 = δ2 . . . δnδ
−1,

hence the same holds for any non-separating simple loop in IntF , being all such
loops equivalent. Then, we have ϕ = ψδ−k, with ψ a product of right-handed Dehn
twists and k ≥ 0, because δ is a central element of Map(F, Bd F ). So, we can surger
M along K in order to get a new 3-manifold M ′, orientation preserving diffeomorphic
to the positive open-book Mψ, which is Stein fillable by theorem 3.4. �
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