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Abstract

Closed braided surfaces in S4 are the two-dimensional analogous of closed braids
in S3. They are useful in studying smooth closed orientable surfaces in S4, since
any such a surface is isotopic to a braided one. We show that the non-orientable
version of this result does not hold, that is smooth closed non-orientable surfaces
cannot be braided. In fact, any reasonable definition of non-orientable braided
surfaces leads to very strong restrictions in terms of self-intersection and Euler
characteristic.
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Introduction

The concept of braided surface in B4 5 B2 ⇥B2 has been introduced since the
early eighties by Rudolph (cf. [18], [19] and [20]) as a two dimensional analogous of
the classical Artin’s braids. Namely, he called braided a surface in B2 ⇥ B2 which
projects onto the first factor by a branched covering.

Successively, in the nineties, Viro and Kamada (cf. [8], [9] and [11]) considered
closed braided surfaces in S4, that is surfaces contained in a normal neighborhood
of S2 ⇢ S4, projecting onto S2 by a branched covering. We can think of a closed
braided surface as closure of a Rudolph’s braided surface with trivial boundary, just
in the same way we think of a closed braid in S3 as closure of an Artin’s braid.

By Kamada’s results, closed braided surfaces can be used to study orientable
smooth surfaces in S4. In fact, he provided two dimensional versions of the Alexan-
der’s and Markov’s theorems on braids, by proving that any such a surface is iso-
topically equivalent to a closed braided surface and finding a set of moves relating
isotopic braided surfaces.

In this paper we deal with the following question: can the above mentioned re-
sults be adapted in order to handle non-orientable surfaces in S4, replacing the stan-
dard 2-sphere as base model for braided surfaces with some standard non-orientable
surface, such as the Veronese surface (see section 3)?

The question is relevant in relation to the representation of orientable closed
smooth 4-manifolds as branched covers of S4, in which non-orientable surfaces play
an essential role as branch sets in S4 (see [6] and [17]).



Unfortunately, the answer is generally negative, in spite of some partial result
obtained by Kamada (cf. [7]). In fact, in section 3 we show that there are very
restrictive conditions for a non-orientable smooth surface in S4 to be isotopic to
a braided one. Nevertheless, we don’t know whether any orientable smooth closed
4-manifold is a cover of S4 branched over a (possibly non-orientable) braided surface.

In order to study non-orientable braided surfaces in S4, in section 2 we consider
braided surfaces in R2-bundles over surfaces and prove a few of preliminary results
about them, which are of some interest independently of the present application.

This paper is a revised version of part of the degree thesis [21] written by the
second author under the supervision of the first author.

1. Preliminaries

To begin with, we reformulate in terms of coverings the classical Artin’s notion
of braid. By a geometric braid of degree d in R3 we mean a 1-submanifold b ⇢
[0, 1]⇥R2 ⇢ R3 such that the canonical projection ⇡ : [0, 1]⇥R2 ! [0, 1] restricts to
a covering ⇡|b : b ! [0, 1] of degree d and moreover, putting bt = {x 2 R2 | (t, x) 2 b},
we have b0 = b1 = ⇤ for a fixed ⇤ = {⇤1, . . . , ⇤d} ⇢ R2.

Considering braids of degree d up to fibre preserving (with respect to ⇡) ambient
isotopy of [0, 1] ⇥ R2, we can think of them as elements of the braid group Bd =
⇡1(SdR2, ⇤) of degree d, where SdR2 5 (⇧dR2 ��)/⌃d denotes the space of all the
subsets of R2 consisting of d distinct points.

We recall the standard presentation of Bd (cf. [4]), with generators x1, . . . , xd�1,
defined as shown in figure 1, and relations xixj = xjxi for any i, j = 1, . . . , d � 1
such that |i� j| > 1 and xixi+1xi = xi+1xixi+1 for any i = 1, . . . , d� 2.
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Figure 1.

Given a braid b = x"1
j1 . . . x"k

jk
2 Bd, we define the index of b to be the exponent

sum i(b) = "1+. . .+"k. Since all the relations above are balanced, it immediately fol-
lows that i(b) is well-defined, that is it does not depend on the particular expression
of b as a power product of standard generators.

We call a closed braid of degree d in R3 any link l ⇢ N(S1) ⇢ R3, where
N(S1) is a fixed open tubular neighborhood of S1 in R3, such that the ortogonal
projection ⇡ : N(S1) 5 S1⇥R2 ! S1 restricts to a covering ⇡|l : l ! S1 of degree d.
By Alexander’s theorem, any link in R3 is ambient isotopic to a closed braid.
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The closure of a braid b 2 Bd is the closed braid bb = (' ⇥ idR2)(b), where
' : [0, 1] ! S1 is the usual parametrization given by '(t) = (cos 2⇡t, sin 2⇡t).
Of course, bb is defined only up to fibre preserving ambient isotopy of N(S1) 5

S1⇥R2, being b 2 Bd defined only up to fiber preserving ambient isotopy of [0, 1]⇥R2.
Viceversa, bb uniquely determines b up to conjugation in Bd.

Then, it makes sense to define the index of a closed braid l in R3 by putting
i(l) = i(b), where b 2 Bd is any braid such that l = bb, being the index of braids
obviously invariant under conjugation in Bd.

The index i(l) of a closed braid l of degree d satisfies the following Bennequin
inequality (cf. [3]), involving the Euler characteristic �(S) of any surface S ⇢ R3

such that l = BdS (that is a Seifert surface for l): |i(l)|  d� �(S) .

Finally, we recall the notion of branched covering between surfaces, which is
needed in order to consider braided surfaces. A map p : S ! X between compact
surfaces is called a branched covering i↵ at any s 2 S it is locally equivalent to the
complex map z 7! zd(s), where d(s) � 1 is the local degree of p at s. The branch
points of p are the images of the singular ones, that is of the points s 2 S such that
d(s) > 1. Moreover, p a called simple if d(s) = 2 for any singular point s 2 S and p
is injective on the singular points.

2. Braided surfaces in fiber bundles

Let f : N ! X be an R2-bundle over a compact connected surface X with
(possibly empty) boundary. We call (simple) braided surface of degree d over X any
locally flat compact surface S ⇢ N such that the restriction p = f|S : S ! X is
a (simple) branched covering of degree d. Moreover, we call twist point of S any
singular point t 2 S of p and denote by d(t) � 2 the local degree of S at t, that is
the local degree of p at t.

For any twist point t 2 S, there exists a commutative diagram like the following,
where: C ⇢ N is a closed neighborhood of t, D ⇢ X is a closed neighborhood of
p(t), h and k are homeomorphisms, bt ⇢ S1⇥ IntB2 is a closed braid of degree d(t),
C(bt) ⇢ B2⇥B2 is the cone of bt with vertex (0, 0), ⇡ is the canonical projection on
the first factor.

t 2 S \ C ⇢ C
f|C���! D??y ??y h

??y k

??y
(0, 0) 2 C(bt) ⇢ B2 ⇥B2 ⇡���! B2

If N is oriented, we can assume that h is orientation preserving (with respect
to the standard orientation of B2 ⇥ B2). Moreover, fixed any local orientation of
X at p(t), we can also assume that k is orientation preserving (with respect to the
standard orientation of B2). With these two assumptions, bt turns out to be uniquely
determined up to braid isotopy, in such a way that we can define the local index
i(t) of S at t to be the integer number i(bt). In fact, it can be easily seen that i(t)
depends only on S and on the orientation of N , while it does not depend on the
choice of the local orientation of X.

– 3 –



If t is a simple twist point of S, then, by local flatness, bt coincides with the
closure of one of the braids x±1

1 2 B2, so that C(bt) can be thought to have equation
w = z2 or w = z̄2 (depending on the sign of the exponent), with respect to the
complex coordinates (w, z) of B2 ⇥B2 ⇢ C2.

On the other hand, if t is a smooth twist point of S, then we get for C(bt) the
equation w = zd(t) or w = z̄d(t), while bt turns out to be the closure of the braid
(x1 · · ·xd(t)�1)±1 2 Bd(t).

Hence, any simple twist point of S is smooth (up to fiber preserving ambient
isotopy of N), and any smooth twist point t can be easily perturbed to get d(t)� 1
simple ones (up to ambient isotopy of N which does not preserve the fibers of f).
In this case, we can assign to the twist point t 2 S a sign s(t) = ±1, depending
only on the local shape of S and on the orientation of N , in such a way that
i(t) = s(t)(d(t)� 1).

For a non-smooth twist point t it may not exist any simple perturbation up to
ambient isotopy, as it is shown in [10]. Nevertheless, we can modify S in a neighbor-
hood of t in order to get a new braided surface S0, where the twist point t is replaced
by a certain number of simple twist points t1, . . . , tk such that i(t) = i(t1)+. . .+i(tk).
Namely, if bt is the closure of a braid x"1

j1 · · ·x
"k
jk
2 Bd(t), then we can replace C(bt) by

a braided surface in B2 ⇥ B2, having a positive (resp. negative) simple twist point
tl for each "l = +1 (resp. "l = �1), with l = 1, . . . , k (cf. proposition 1.11 of [19]).

We remark that the braided surface we put in place of C(bt) is not necessarily a
disk, however it is homologous to C(bt) mod the common boundary bt. Then, S and
S0 may not be isotopic, but they share some homological properties, in particular
they have the same self-intersection number as multi-valued sections of f . Moreover,
by local flatness, the closed braid bt represents the unknot, hence the Bennequin
inequality implies that |i(t)|  d(t)� 1.

Still assuming N oriented, we define the index of S as the sum i(S) =
P

i(t),
where t runs over all the twist points of S. The following proposition gives the index
of S in terms of its degree d and of the Euler number e of the bundle f : N ! X
over a closed surface X.

Proposition 2.1. If N is oriented and S ⇢ N is any braided surface over a
closed surface X as above, then i(S) = ed(d� 1).

Proof. By the definition of index and the previous observations, we can assume
that S is simple, so that i(S) equals the algebraic number of the twist points of S.

To begin with, we consider a handlebody decomposition of the base surface
X, consisting of one 0-handle H0, 1-handles H1

1 , . . . , H
1
2g+h attached to H0 in the

standard way depicted in figure 2, with g, h � 0 and H1
j orientable (resp. non-

orientable) for j = 1, . . . , 2g (resp. j = 2g + 1, . . . , 2g + h), and one 2-handle H2.
We can assume that all the branch points of p belong to IntH2, in such a way

that, putting X1 = H0 [ H1
1 [ . . . [ H1

2g+h, N1 = f�1(X1) and S1 = S \ N1, the
restriction p|S1 : S1 ! X1 is an ordinary covering.

By a suitable choice of the trivializations of f over the handles H0 and H1
j , we

can think of N1 as the quotient space obtained by attaching H1
j ⇥ R2 to H0 ⇥ R2

for all j = 1, . . . , 2g + h, by fiber preserving maps, whose restrictions to the fibers
coincide with idR2 or �, where � : R2 ! R2 is the symmetry with respect to the
y-axis.
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Figure 2.

Moreover, we can assume that the trivialization f�1(H0) 5 H0 ⇥ R2, makes
S0 = S \ f�1(H0) into H0 ⇥ {⇤1, . . . , ⇤d} ⇢ H0 ⇥ R2, where ⇤1, . . . , ⇤d belong to
the x-axis and �({⇤1, . . . , ⇤d}) = {⇤1, . . . , ⇤d}. Then, for every j = 1, . . . , 2g + h, the
trivialization f�1(H1

j ) 5 H1
j ⇥ R2 makes S \ f�1(Cj) into a braid cj ⇢ Cj ⇥ R2,

where Cj denote the core of the handle Hj, oriented as in figure 2.
We observe that S1 is completely determined (up to fiber preserving iso-

topy) by the braids c1, . . . , c2g+h 2 Bd and BdS1 is a closed braid in BdN1 5

BdX1 ⇥ R2 5 S1 ⇥ R2, which can be thought as the closure of the braid
c = c1c2c

�1
1 c�1

2 · · · c2g�1c2gc
�1
2g�1c

�1
2g c2g+1c�

2g+1 · · · c2g+hc�
2g+h 2 Bd, where c�

j denotes
the image of cj under the action of �.

Putting N2 = f�1(H2) and S2 = S \ N2, we have that Bd(S2) = Bd(S1)
is a closed braid in BdN2 5 BdH2 ⇥ R2 5 S1 ⇥ R2, which can be thought as
the closure of the braid c0 = cte, where t 2 Bd denotes one positive full twist
of d strings. On the other hand, denoting by t1, . . . , tn 2 S2 the (simple) twist
points of S, it is straightforward (for example, see proposition 1.11 of [19]) to get
c0 = y1x

s(t1)
j1 y�1

1 · · · ynx
s(tn)
jn

y�1
n , where each xj is a standard generator of Bd and

s(tj) = ±1 as above.
At this point, we can finish the proof by observing that the computation of i(c0)

based on the first expression of c0 as a product of powers of generators gives us
ed(d� 1), while the second one gives us s(t1) + . . . + s(tk), that is i(S). ⇤

As a consequence of proposition 2.1, we get numerical obstructions to the ex-
istence of braided surfaces, in terms of Euler characteristic and number of twist
points.

Proposition 2.2. If N is oriented and S ⇢ N is any braided surface over a
closed surface X as above, then �(S)  d(�(X)�|e|(d�1)). Moreover, if S is simple,
then the number of twist points is even and not less than |e|d(d� 1).

Proof. By the Hurwitz formula we have �(S) = d�(X) �
P

(d(t) � 1). Then,
the first part of the proposition follows immediately by proposition 2.1 and by the
inequalities |i(S)| 

P
|i(t)| 

P
(d(t) � 1). For the second part, it is enough

to observe that, if S is simple, then the number of twist points coincides withP
(d(t)� 1), which is congruent to i(S) =

P
s(t)(d(t)� 1) mod 2. ⇤

Now, we want to show that the inequalities given by the proposition 2.2 are
sharp. Given any R2-bundle f : N ! X with oriented total space N and arbitrary
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Euler number e > 0 (the case e < 0 can be covered by reversing the orientation of
N), let S1, . . . , Sd ⇢ N be d smooth sections of f , transversally meeting each other
in e points. Then, replacing each of the ed(d � 1)/2 double points of S1 [ . . . [ Sd

with one pair of positive simple twist points, as shown in figure 3, we get a simple
braided surface S of degree d over X, with ed(d � 1) positive twist points and
�(S) = d(�(X) � e(d � 1)). On the other hand, we can easily add to S pairs of
opposite simple twist points, as shown in figure 4, in order to arbitrarily increase
the number of twist points of S and decrease the Euler characteristic �(S).

Figure 3.

Figure 4.

We conclude this section by computing the Euler number e(S) of the braided
surface S, that is the self-intersection number of S in the oriented 4-manifold N ,
which coincides with the self-intersection of S as a multi-valued section of f .

Proposition 2.3. If N is oriented and S ⇢ N is any braided surface over a
closed surface X as above, then e(S) = i(S) + ed = ed2.

Proof. Let s : X ! N be a cross section of f transverse to the null section.
We can assume that S is simple and that the zeroes of s are not branch points. By
translating s(x) at every point in S \ f�1(x) for every x 2 X and taking normal
component with respect to S, we get a normal vector field v along S with non-
degenerate singularities.

A point y 2 S is a singular point for v i↵ f(y) is a singular point for s or y
is a twist point for S; furthermore all the signs are coherent. Therefore we have
e(S) = i(S) + ed. Then, the statement follows by proposition 2.1. ⇤

We notice that the results above can be easily generalized to the case of singular
braided surfaces with transversal double points, by taking account of each double
point as a pair of twist points. Namely, denoting by n(S) the algebraic number of
double points of S, we have i(S) + 2n(S) = ed(d� 1) and e(S) = ed2 � 2n(S).
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3. Non-orientable braided surfaces in S4

In this section we apply the results of the previous one, in order to show that
the Viro-Kamada’s representation theorem of orientable surfaces in S4 as braided
surfaces (cf. [8]) cannot be extended to include the non-orientable case.

In fact, by combining the results of the previous section with the Whitney’s
conjecture on non-orientable surfaces in S4, proved by Massey in [14], we get very
restrictive conditions for such a surface to be isotopic to a braided one, with respect
to any reasonable definition of non-orientable braided surface. We recall that the
Whitney conjecture imposes the following constrains to the self-intersection number
e of a non-orientable surface of Euler characteristic � in S4: e ⌘ 2� mod 4 and
|e|  4� 2�.

It is natural to call a non-orientable braided surface in S4 any non-orientable
surface S ⇢ S4 which is contained as a braided surface over X in the normal fiber
bundle ⌫ : N ! X of some fixed standard smooth non-orientable surface X ⇢ S4,
where N is identified with an open tubular neighborhood of X in S4.

The most significant choice for X is the Veronese surface V ⇢ S4 defined in the
following way. First of all, we consider the space M 5 R9 of the 3⇥ 3 matrices over
R with the inner product given by hA,Bi = tr(ABT ) for all A,B 2 M, and the
map ' : S2 !M defined by '(x) = xTx for any x 2 S2 ⇢ R3. Since '(y) = '(x)
i↵ y = ±x, we get an induced embedding  : P 2 !M, where P 2 is thought as the
quotient of S2 by the action of the antipodal map x 7! �x. Then, we put V =  (P 2)
after having identified S4 with the intersection of the unit sphere of M with the
a�ne subspace L = {M 2M | M = MT and trM = 1} 5 R5.

The remarkable property that characterizes V is the existence of a symmetric
splitting S4 5 N [f N , where N is a closed tubular neighborhood of V in S4 and
f is an involution of BdN onto itself (see [13] and [16]). Such splitting has several
relevant geometric properties (cf. [1] and [16]), moreover, from a topological point
of view, it is related to the identification of S4 with the quotient of the complex
projective plane under complex conjugation, being V the branch set of the canonical
projection CP 2 ! CP 2/⇠ 5 S4 (cf. [12], [13] and [15]).

Corollary 3.1. Any non-orientable braided surface S ⇢ S4 of degree d over
the Veronese surface V ⇢ S4 satisfies the following conditions: �(S)  d(3 � 2d),
i(S) = 2d(d � 1) and e(S) = 2d2. As a consequence, the only surface S braided
over V with �(S) = 1 is V itself (up to isotopy of braided surfaces) and there is no
surface S braided over V with �(S) = 0,�1,�3,�5,�7.

Proof. The first part of the corollary immediately follows from the results of the
previous section, by taking into account that e(V ) = 2. Now, the first inequality
implies that: for �(S) = 1 we have d = 1, that is S 5 V ; on the other hand, for
d � 2 we have �(S)  �2; furthermore, we have d � 3, that gives us �(S)  �9, if
we assume �(S) odd and less than 1, since in this case also d is odd, because of the
congruence 2d2 ⌘ 2�(S) mod 4. ⇤

We remark that, by the equation e(S) = 2d2, any surface S ⇢ S4 braided
over V has positive self-intesection. In order to get negative (resp. vanishing) self-
intersection numbers, one could consider surfaces braided over V 0 = ↵(V ) (resp.
V #V 0), where ↵ : S4 ! S4 is the antipodal map.
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Moreover, it is worth observing that, in the non-vanishing cases, only few val-
ues of the self-intersection among the ones allowed by the Whitney conjecture are
realized by surfaces braided over V or V 0. In fact, the self-intersection number of
such a surface, besides having the very special form e(S) = ±2d2, is bounded by
the inequality |e(S)|  9/4��(S) + 3/4

p
9� 8�(S), that can be derived from the

inequality of corollary 3.1 by a straightforward computation.
However, the following problem remains still open: is it possible to represent

any orientable closed smooth 4-manifold as a cover of S4 branched over a (possibly
non-orientable) braided surface?
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