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ABSTRACT

In this paper we give a positive answer to a long standing question posed by Montesinos, by
introducing new covering moves, in order to relate any two colored diagrams representing
the same 3-manifold as simple branched 3-covering of S3.

Introduction

By a well-known theorem of Hilden and Montesinos ([6] and [7]), every closed
orientable 3-manifold is a simple 3-covering of S3 branched over a link.

Following R. Fox (cf. [5]), such a covering can be described by coloring each bridge
of a planar diagram of the branch link with R = red, G = green or B = blue, according
to whether the monodromy of the corresponding meridian is the transposition (1 2),
(2 3) or (1 3) of S3.

Then we can use colored diagrams of links to represent 3-manifolds, and, of course,
the natural question which immediately arises is to determine what di↵erent diagrams
represent the same manifold. Montesinos long ago posed the problem, more or less in
the following way:

Find a set of moves on colored link diagrams, such that any two dia-
grams represent the same manifold i↵ they are related (up to colored
Reidemeister moves), by a finite sequence of such moves.

The local move I, described in figure 1, was considered a possible answer for a long
time (cf. [9]), up to when Montesinos found a counterexample (cf. [8]).

In this work we give a solution to the problem (equivalence theorem of section 1),
by providing three new moves (see figure 7), which together with the previous one form
a complete set of moves as required above.

B R

B R

B R

GI

Move M
of Montesinos

(±3)

Figure 1.

That is obtained by normalizing the branch links as colored braids, corresponding
to Heegaard spittings of the covering manifolds (cf. [1]), in such a way that we can apply
results of [10] and [2], respectively in order to realize stable equivalence of splittings and
to relate di↵erent braids representing the same splitting homeomorphism.

An application of our moves will be given in a forthcoming paper, in which we
prove that any 4-manifold can be represented as a 4-fold branched covering of S4.
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0. Preliminaries

By an n-fold branched covering we mean a nondegenerate PL map p : C ! X
between compact PL manifolds, for which there exist subpolyhedra S ⇢ C and B ⇢ X
(the branch set) of codimension 2, such that p|C�S : C � S ! X � B is an ordinary
n-fold covering.

If B is a locally flat submanifold of X, then any n-fold ordinary covering of X �B
uniquely extends to an n-fold branched covering of X. Thus, n-fold branched coverings
of X with branch set B are in 1-1 correspondence with the representations of ⇡1(X�B)
into Sn, the symmetric group of degree n.

For a branch link L ⇢ S3, any such representation can be given by considering
a planar diagram of L, and associating to each bridge of the diagram a permutation
representing the corresponding Wirtinger generator of ⇡1(S3�L). Moreover, in the case
of a 3-fold branched covering, which is simple (that is all the Wirtinger generators are
represented by transpositions), we can associate to each bridge of the diagram the color
R = red, G = green or B = blue, instead of the transposition (1 2), (2 3) or (1 3).

A link diagram whose bridges are colored in this way is called a colored diagram.
Of course, the coloration of a colored diagram is not completely arbitrary, because of
the Wirtinger relations. By directly substituting in any order the transpositions (1 2),
(2 3), (1 3) for x, y, z in the typical form x = yzy�1 of Wirtinger relators, we see that
a coloration of a link diagram gives a colored diagram if and only if the colors of the
three local arcs meeting at any overcrossing point are all the same or all distinct.

We define colored Reidemeister moves, by recoloring the part of the diagram mod-
ified by ordinary Reidemeister moves in the unique way compatible with the ‘all the
same or all distinct’ rule. Then, a colored isotopy is given as a sequence of colored
Reidemeister moves.

By a normalized diagram we mean a colored plat (= braid closed at the top and the
bottom by simple arcs) diagram, such that all the top and bottom arcs are red except
for the leftmost ones which are blue (cf. figure 2).

all red

Colored braid

. . .

. . .

Normalized
diagram

B R R

all redB R R

Figure 2.

Recall that an m-braid on S2 is an element of the loop space ⇤(PmS2, ⇤), where
PmS2 denotes the set of all subsets of S2 of order m, and ⇤ is any such subset. Two
braids are said to be equivalent if they are homotopy equivalent as based loops, that is
if they represent the same element of the group B(m) = ⇡1(PmS2, ⇤), which is called
the braid group of degree m of S2.

A braid b 2 ⇤(PmS2, ⇤) can also be represented geometrically in S2 ⇥ [0, 1], by
considering the union of all the sets b(t) ⇥ t, with t 2 [0, 1]. Then, two braids are
equivalent if and only if their geometric representations are isotopically equivalent in
S2 ⇥ [0, 1] by means of an ambient isotopy fixing the boundary.
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branched
covering Colored

braidh

M S3

H1

H2

B1

B2

S2 × [0, 1]Fg × [0, 1]

Figure 3.

Classical braids in R3 between planes z = z0 and z = z1, such as the one in
figure 2, can be seen as geometric representations of braids on S2, considering that
R2 ⇥ [z0, z1] 5 R2 ⇥ [0, 1] ⇢ S2 ⇥ [0, 1], the inclusion being induced by the one-point
compactification of R2.

a1 a2 ag

b1 b2 bg

c0 c1 cg

d1 d2 dg
fold 1

fold 2

fold 3

Fg = Bd Tg ⊂ Tg

S2 = BdB3 ⊂ B3

fg

B R

Figure 4.

Given any surface F , we denote by M(F ) the mapping class group of F , that is
the group of all isotopy classes of homeomorphisms of F onto itself. M(g) will be used
instead of M(Fg), where Fg ⇢ R3 is the closed surface of genus g shown in figure 4.

Now, we say that an ambient isotopy {ht}0t1 of S2 realizes a braid b if ht(⇤) =
b(t), for every 0  t  1. It is a classical result (cf. [3]), that any braid can be realized
by an (obviously not unique) ambient isotopy of S2, and that the correspondence b 7!
h1|S2�⇤, induces a group epimorphism

⌘ : B(g) ! M(S2 � ⇤).

– 3 –



Any normalized colored diagram induces a Heegaard splitting M = H1 [h H2 of
the covering manifold, as sketched in figure 3.

In order to describe the splitting, we observe that the handlebodies H1 and H2

cover (by restriction) the two 3-cells B1 and B2 in a standard way, which depends
only on the genus of the splitting. Therefore we can identify H1 and H2 with a fixed
handlebody Tg ⇢ R3, for all the splittings of genus g induced by normalized diagrams.
The covering after this identification is described in figure 4.

Let fg : Fg ! S2 be the restriction of such a covering to the boundary. Then the
splitting homeomorphism h : BdH1 ! BdH2 is (up to isotopy) the lifting with respect
to fg of the homeomorphism h1 of any isotopy which realizes the (2g + 4)-braid of the
diagram.

αi

βi

γi

x0 x2i x2i+1 x2i+2 x2g+2

B R R R R R

. . .x1 x2 x3 x4 . . .

Figure 5.

We remark that this construction cannot be applied to any (2g +4)-braid b. In fact
h1 is liftable with respect to fg if and only if b is colorable as the braid of a normalized
diagram. In this case we say that b is liftable. By using colored isotopy, we see that
liftability is invariant under equivalence of braids. Then we denote by L(2g + 4) ⇢
B(2g + 4) the liftable braid group consisting of all liftable equivalence classes of braids.
Moreover, since lifting can be obviously defined in terms of the epimorphism ⌘, we have
a lifting group homomorphism

� : L(2g + 4) ! M(g).

It turns out (cf. [1] or [4]) that any Heegaard splitting (hence any 3-manifold)
can be represented in the above way, by means of a normalized diagram. This follows
immediately from the fact that the homomorphism � is onto. In figure 5 are shown
braids representing (= lifting to) the left-handed Dehn twists ↵i, �i and �i about the
loops ai, bi and ci drawn in figure 4, which, by a well-known theorem of Lickorish (cf.
[3]), generate the mapping class group M(g).
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Namely, if x0, . . . , x2g+2 are the standard generators for the braid group B(2g + 4)
(cf. figure 5), and [x]y denote the braid y�1xy then:

↵i is represented by x2i+1;
�i is represented by [x2i](x2i�1 . . . x2x2

1x2 . . . x2i�2x2
2i�1x2i�2 . . . x1), in fact

this braid corresponds to the half-twist about the arc pi ⇢ S2 shown in
figure 6, whose lifting is, up to isotopy, �i (cf. [2] for �2);

�i is represented by x2i+2.

We warn the reader that, in drawing colored diagrams, we usually omit superfluous
color labels; they can be deduced, by the ‘all the same or all distinct’ rule.

bi

pi

fg

B R

Figure 6.

1. The new moves and the equivalence theorem

Let us begin this section by describing the new moves we introduced, in order to
relate colored diagrams representing the same manifold. We do that in figure 7, where
all the diagrams consist of a colored braid (trivial on the left side) joining two arbitrary
colored links L and L0.

We remark that such moves, in contrast with the Montesinos move, are not local.
In fact they involve the global structure of the diagram (in figure 7 all the diagrams are
completely drawn).

The fact that they do not change the covering manifold (up to homeomorphism)
will be proved in section 3, by showing that all the braids on right side of figure 7 are
equivalent to braids which represent the identity in M(g).

Finally, we note that the new moves, together with the Montesinos move, might be
not completely independent. In fact, we conjecture that this is the case, but at present
we have no results in this direction.
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I
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IV
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B R R R R R R B B R R R R R R

B B G G B B R R R R B B G G B B R R R R

L

L′

L

L′

L

L′

L

L′

L

L′

all
red

. . .

all
red

. . .

all
red

. . .

all
red

. . .

all
red

. . .

all
red

. . .

Figure 7.

Now, we can state the main result of our work:

The Equivalence Theorem. Two colored link diagrams represent
the same manifold i↵ they can be related (up to colored Reidemeister
moves) by a finite sequence of moves of the types I, . . . , IV (described
in figures 1 and 7).

We prove the theorem in three steps: (1) normalization of any colored diagram by
means of colored isotopy, that is colored Reidemeister moves; (2) realization of stable
equivalence of Heegaard splittings represented by normalized diagrams, by using col-
ored isotopy and move I; (3) connection of normalized diagrams representing the same
splitting homeomorphism.

The first step is quite elementary and we conclude this section by proving it. The
other two steps are more complicated and will be carried out respectively in sections 2
and 3.
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In order to normalize a colored link diagram, we can assume that the diagram is a
plat, since any link has a plat presentation (cf. [4]).

Then we need only to get the right colors for the top and bottom arcs of the plat.
This can be done separately for the top and the bottom, by using the local isotopies
shown in figure 8, if we assume (as we can easily do) that all the colors are present
there. The first kind of isotopy allows us to reorder the colors, the second one can be
used for eliminating the green arcs, and the third one makes it possible to eliminate all
the blue arcs but the leftmost.

B R

G B

B B R

R B

B R

B R R

Figure 8.

2. Realizing stable equivalence of Heegaard splittings

In this section we prove that any two normalized diagrams representing the same
manifold, can be modified by using colored isotopy and move I, in such a way that they
induce the same splitting homeomorphism.

Let D and D0 be two normalized diagrams representing the same 3-manifold M ,
then the corresponding Heegaard splittings M = H1 [h H2 and M = H 0

1 [h0 H 0
2 are

stably equivalent (cf. [11]). That is, there exist stabilizations:

H 00
1 [eh H 00

2 = (H1 [h H2)# (#n T [ T )
and

H 00
1 [eh0 H 00

2 = (H1 [h0 H2)# (#n T [ T )

of them, where T [T denotes the genus 1 splitting of S3, and there exists a commutative
diagram as follows:

H ′′
1 ⊃ BdH ′′

1 Bd H ′′
2 ⊂ H ′′

2
h̃

H ′′
1 ⊃ BdH ′′

1 Bd H ′′
2 ⊂ H ′′

2
h̃′

h1 h2
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where all the vertical arrow are homeomorphisms. (This means that the two homeo-
morphisms h1 and h2 between the boundaries of the handlebodies extend to homeo-
morphisms between the handlebodies.)

First of all, we observe that stabilization can be represented in terms of normalized
diagrams, by iterating the modification described in figure 9 (which corresponds to make
connected sum with a copy of T [ T ).

B R R

B R R

B R R

B R

R

RR

Figure 9.

Then, by means of colored isotopy, we can change D and D0 into normalized di-
agrams eD and eD0 representing the stabilized splittings M = H 00

1 [eh H 00
2 and M =

H 00
1 [eh0 H 00

2 .
Now, if we add on top and on bottom of eD two colored braids, respectively lifting

to the homeomorphisms h�1
1 and h2, we get a new normalized diagram inducing the

same splitting homeomorphism eh0 induced by eD0.
The rest of this section is entirely devoted to show how to add these braids, by

means of the prescribed moves.
Denote by M⇤(g) the subgroup of M(g) consisting of all isotopy classes of the

homeomorphisms of Fg onto itself, which extend to homeomorphisms of the handlebody
Tg onto itself (cf. [10]).

ρ

ρ

Fg

ρ′12

ω1

s12

s1a1

b1

a2

b2

a3 b3

ag 1

bg−1

ag
bg

−

Figure 10.
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We will prove that any element of M⇤(g) is represented by a colored braid which
can be added on top (and hence on bottom) of a normalized diagram by using only
colored isotopy and move I.

s12

a1

b1

a2

b2

c1

x

C
t

Figure 11.

In [10], Suzuki proved that M⇤(g) is generated by the isotopy classes of the following
homeomorphisms (we drop the dots in Suzuki’s notation):

⇢ , ⇢12 ,!1 , ⌧1 , ✓12 and ⇠12 ,

where ⇢ is the cyclic permutation, by rotation of 2⇡/g radians, of the g knobs of Fg

embedded in R3 as in figure 10, and moreover, by looking at figures 10 and 11, and
denoting by �i and �i,i+1 the Dehn twists about the loops si = ⇢i�1(s1) and si,i+1 =
⇢i�1(s12):

⌧i is the right-handed twist of the i-th handle, that is ��1
i ;

!i is the half twist of the i-th knob, whose square is ��1
i ;

⇢i,i+1 = ⇢0i,i+1!i!i+1 where ⇢0i,i+1 interchanges the i-th and (i+1)-th knobs, by
means of a half twist whose square is �i,i+1;

✓12 is (modulo �1) the sliding of the attaching loop BdC of the first handle
(to S2) about the oriented simple loop t ⇢ Fg [ C;

⇠12 is (modulo �1) the sliding of the same attaching loop about the oriented
simple loop x ⇢ Fg [ C.

f

B R

′
g

a1

b

q

1

Figure 12.
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Let us write all these homeomorphisms in terms of the standard generators of M(g).
First of all, since the loop x of figure 11 is (up to isotopy in Fg [C modulo C) the core
of the annulus A ⇢ Fg [ C bounded by !�1

2 (c1) on the left side (with respect to the
orientation of x) and by !�1

2 (b2) on the right side, we easily get the sliding !2�1�
�1
2 !�1

2

for ⇠12.
Analogously, by considering the loop t and the annulus A0 ⇢ Fg [ C bounded

by (↵2�2)(b2) on the left side and by (↵2�2)(c1) on the right side, we get the sliding
��1

2 ↵�1
2 �2�

�1
1 ↵2�2 for ✓12.

Moreover, by looking at the branched covering f 0g : Fg ! S2 of figure 12, we see
that !1 is the lifting of a half twist of the disk containing the blue branch points
and bounded by the simple loop q, and it can be represented by the (blue) braid
(x0x1x2x0x1x0)�1, which obviously also represent (↵1�1)�3 = (↵2

1�1↵2
1�1)�1; so we

have !1 = (↵2
1�1↵2

1�1)�1.
In the same way, by looking at the branched covering f 00g : Fg ! S2 of figure 13, we

see that ⇢012 is the lifting of a half twist of the disk containing the blue branch points
and bounded by the simple loop r, and we have (by using standard identities for getting
a more convenient form):

⇢012 = �1↵1�1↵2�2�1↵1�1↵2�1↵1�1�1↵1�1

= �1↵1�1↵2�2�1↵1�1�1↵1↵2�1�1↵1�1

= �1↵1�1↵2�2↵1�1↵1�1↵1↵2�1�1↵1�1

= �1↵1�1↵2�2↵1�1�1↵1�1↵2�1�1↵1�1

= �1↵1�1↵2�2↵1�1�1↵1�1�1↵2�1↵1�1

= �1↵1�1↵2�2↵1�1↵1�1↵1�1↵2�1↵1�1 .

Finally, a straightforward computation of the actions on ⇡1(Fg), shows that ⇢ =
⇢g�1,g⇢g�2,g�1 . . . ⇢12!2

1 ; in fact, by referring to the notation of [10], we have that the
induced homomorphisms coincide, up to conjugation by the commutator s1.

f

B R

a1

b1

a2

b2

′′
g

c1

r

Figure 13.
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βi

B . . .R R R R. . . B . . .R R R R. . .

B . . .R R R R. . . B . . .R R R R. . .

(a) Top of a normalized diagram (b) . . . by colored isotopy

(c) . . . by two Montesinos moves (d) . . . by colored isotopy

Figure 14.

B . . .R R R R. . . B . . .R R R R. . .

(a) By colored isotopy from the top (b) . . . as in figure 14

αi

αi

αi

αi

βiβi

Figure 15.
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(a) By colored isotopy from the top (b) . . . as in figure 14 (+ isotopy for βi+1)

B RR R R R . . .. . . B RR R R R . . .. . .

αi

αi

αi

αi

αi

βi

βi+1

βi

βi+1

αi+1

αi+1

γi

γi

γi

γi

Figure 16.

(a)

B R R R B R R R

By colored isotopy fromp the top (b) . . . as in figure 14

β2β2

α−1
2

γ−1
1

α2

Figure 17.

So, we have the following identities, the second and the fourth of which are obtained
by conjugating by ⇢i�1 the analogous ones given above for i = 1:

⌧i = ��1
i , !i = (↵2

i �i↵2
i �i)�1 , ⇢ = ⇢g�1,g⇢g�2,g�1 . . . ⇢12!2

1 ,

⇢i,i+1 = �i↵i�i↵i+1�i+1↵i�i↵i�i↵i�i↵i+1�i↵i�i (modulo !i!i+1) ,

⇠12 = !2�1�
�1
2 !�1

2 and ✓12 = ��1
2 ↵�1

2 �2�
�1
1 ↵2�2 (modulo �1) .

Hence, it is clear that we need only to show how to add on top of a normalized
diagram colored braids representing the homeomorphisms:
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�i and ↵2
i �i↵2

i for i = 1, . . . , g ,

↵i�i↵i+1�i+1↵i�i↵i�i↵i�i↵i+1�i↵i for i = 1, . . . , g � 1 ,

�1 and ↵�1
2 �2�

�1
1 ↵2 .

We do that (except for the trivial case of �1) in figures 14 to 17, which conclude
this section.

3. Representing the identity splitting homeomorphism

In this section we prove that the new moves introduced in figure 7 do not change the
covering manifold (up to homeomorphism), and then we use them to relate normalized
diagrams inducing the same splitting homeomorphism.

Considering the homomorphism � : L(2g+4) ! M(g) defined in section 0, we have
that two normalized diagrams induce the same splitting homeomorphism if and only if
the corresponding braids di↵er by an element of ker�.

Then the two aims of this section can be achieved, by proving that: (1) all the
braids on right side of figure 7 are (up to colored isotopy and Montesinos moves) in
ker�; (2) elements of ker� can be added on top of a normalized diagram by means of
moves I–IV .

(a) By colored isotopy
from the braid of move III

(b) . . . by Montesinos moves inside
the larger dashed circle in (a) and
a move II inside the smaller one

B . . .B R R R R B . . .B R R R R

v

x−1
2

Figure 18.

The first fact is well know for the braid x0 corresponding to move II (cf. [1] or
[4]). Moreover, it is easy to prove for the braid corresponding to move III, since this
braid is equivalent, as shown in figure 18, to the braid vx�1

2 , where v = [x0](x1x2
2x1)�1

represents the Dehn twist �1 about the loop d1 drawn in figure 4 (cf. [1], where �1 is
denoted by t(b1)).

Finally, in figure 19 we show how to modify the braid corresponding to move
IV , in order to get the braid [u]y�1

2 w�1, where u = [x4](x3x2x2
1x2x3

3x2x1), y2 =
x5x4x3x2

2x3x4x5 and w = (x1x2x3x2
4x3x2x1)�2.

This last braid belongs to ker�, since w represents the Dehn twist �2 about the loop
d2 drawn in figure 4 (cf. [4], where �2 is denoted by �2), u represents �2 (cf. section 0)
and the homeomorphism ↵2�1↵1�2

0↵1�1↵2, given by y2, makes b2 into d2 and viceversa.
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B B G G B B R R. . . B B G G B B R R. . .

B B G G B B R R. . .

B B R R R R R R. . .B B R R R R R R. . .

B B G G B B R R. . .

(a) By colored isotopy
from the braid of move IV

(b) . . . by Montesinos moves
inside the dashed circles in (a)

(c) . . . by colored isotopy (d) . . . by Montesinos moves
inside the dashed circles in (c)

(e) . . . by conjugation and a move III
inside the dashed circle in (d)

(f) . . . by colored isotopy

y2

u

y−1
2

w−1

Figure 19.
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In order to prove the second fact, let us consider the characterization of ker� (given
in [2], where the homomorphism � is denoted by e�) as the smallest normal subgroup of
L(2g + 4) containing the following elements:

x0 , x3
1 , B0 = (x2x3x4)4[u�1]y�1

2 u�1 , y�1
g x�1

2g+2ygx2g+2

where yg = x2g+1 . . . x3x2
2x3 . . . x2g+1.

(a) By colored isotopy
from the trivial braid

(b) . . . by a move III inside
the dashed circle in (a)

(d) . . . by colored isotopy
as shown in (c)

(c) . . . by Montesinos moves inside the larger circle
in (b) and a move II inside the smaller one

B B R R R R R R B B R R R R R R

B B R R R
R

R RB B R R R
R

R R

y−1
g

yg

x−1
2g+2

x2g+2

Figure 20.

Then, we are reduced to showing how to insert such four braids in a normalized
diagram (that is something more than we really need, so this is a point where our work
could be possibly improved).

For x0 and x3
1 we don’t need to prove anything, since they can be obviously re-

alized by move I and II. On the other hand, figure 20 shows how to get the braid
y�1

g x�1
2g+2ygx2g+2.
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B

(a) By colored isotopy
from the trivial braid

(b) . . . by Montesinos moves
inside the dashed circles in (a)

(c) . . . by colored isotopy (d) . . . by a Montesinos move
inside the dashed circle in (c)

B R R R R R R B B R R R R R R

B B R

R

R R R RB B R

R

R R R R

(x2x3x4)4

w−1

u−1

Figure 21.

Figure 21 concludes the proof of the theorem, by showing how to realize the braid
(x2x3x4)4w�1u�1, which is equivalent to B0 up to moves, since what we have proved
above (cf. figure 19).
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