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ABSTRACT – We introduce a planar coloured-diagram representation of links in 3-

manifolds given as branched coverings of the 3-sphere. We also prove an equivalence theorem

based on local moves and the existence of a universal configuration for such representation. As

an application we give unified proofs of two different results on existence of fibered links in

3-manifolds.

Introduction and notations.

Throughout this paper we shall work in the piecewise linear (PL) category. We refer
to [11] and [12] for basic notions and standard results.

An n-link in a 3-manifold M is a subspace L ⊂ M homeomorphic to Ln = S1� . . .�S1

(the disjoint union of n copies of S1). Two n-links L, L′ ⊂ M are said to be isotopically
equivalent if there exists an ambient isotopy H : M × [0, 1] → M such that h1(L) = L′. By
[8], this notion of equivalence can be also formulated in terms of locally unknotted isotopy
of Ln in M , or in terms of finite sequence of elementary deformations. We say that L′

is obtained from L by an elementary deformation if there exists a disk D ⊂ M such that
α = L∩D and α′ = L′∩D are arcs in Bd D, α∩α′ = Bdα = Bdα′ and L′ = (L−α)∪α′.

If p : M → S3 is a d-fold covering branched over a link, then Sp, Bp = p(Sp),
S′

p = p−1(Bp) − Sp and ωp : π1(S3 − Bp) → Σd will denote respectively the singular link,
the branching link, the pseudo-singular link and the monodromy of p. We recall that M

is uniquely determined (up to homeomorphism) by Bp and ωp.
By considering the identification S3 5 R3 ∪ {∞}, the covering p can be represented

by a planar diagram of Bp, whose overpasses are labelled with the monodromy of the
corresponding Wirtinger meridians. Such a diagram will be called a p-diagram of M . Two
different p-diagrams can be related by a finite sequence of labelled Reidemeister moves.
Note that any p-diagram naturally induces a splitting complex for p, namely the half-
cylinder under Bp.
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Any closed orientable 3-manifold M admits a simple covering p : M → S3 branched
over a knot, actually a 3-fold one ([4], [7] and [9]). Therefore, it can be represented by a
p-diagram labelled by transpositions. The set of all simple coverings p : M → S3 branched
over a link will be denoted by S(M).

Diagrams of links.

If M is a 3-manifold and p : M → S3 is a branched covering, then a link L ⊂ M

is called p-regular if L ∩ (Sp ∪ S′
p) = ∅ and p|L is injective. Standard general position

arguments ensure that every link is ε-equivalent to a p-regular one. If L is a p-regular link,
then the projection p(L) is a link embedded in S3 − Bp and L is uniquely determined by
p(L), together with a choice of a point Pi of p−1(Ki) ∩L, for each component Ki of p(L).
In fact, the link L can be reconstructed by lifting each Ki, starting from Pi.

Given a p-diagram D of a 3-manifold M , we obtain a planar representation of any link
L ⊂ M (up to isotopical equivalence), called a link p-diagram, in the following way. By
general position, we can assume that L is p-regular and that the projection of p(L) in the
plane of D gives rise, together with D itself, to a diagram of p(L)∪Bp, then we label each
overpass C of p(L) with the number of the sheet containing p−1(C) ∩ L (sheets and their
numbering come from the splitting complex and the monodromy associated to D). Observe
that consecutive overpasses of p(L) are labelled by i and σ(i) if the transition occurs under
an overpass of Bp with label σ, while they have the same label if the transition occurs
under an overpass of p(L) itself. Figure 1 shows a diagram representing a knot in S2 ×S1.
Here, as well as in all the figures representing link p-diagrams, thicker (resp. thinner) lines
are used for the link p(L) (resp. the branching set Bp).
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Figure 1.
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By a labelled Reidemeister move on a link p-diagram we mean an ordinary Reidemeis-
ter move on the diagram, taking place inside a disk D, with the final stage labelled as the
initial one outside D and in the unique possible way, according to continuity, inside D.

Since any ambient isotopy of S3 rel Bp (uniquely) lifts to an ambient isotopy of M

rel Sp ∪S′
p, any two link p-diagrams related by labelled Reidemeister moves which keep D

fixed represent links isotopically equivalent in M .
On the other hand, in order to represent any isotopical equivalence of links in M we

need the local moves I, II and III depicted in the following Fig. 2.
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Figure 2.
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Equivalence Theorem. Let M be a closed orientable 3-manifold and p ∈ S(M). Then

two p-diagrams of links based on the same p-diagram D of M , represent isotopically equiv-

alent links in M if and only if they are related by a finite sequence of labelled Reidemeister

moves fixing D and moves I, II and III.

– 3 –



Proof. It can be easily realized that the moves I, II and III do not change the equivalence
class of the link. We prove the “only if” part. Let L, L′ ⊂ M be isotopically equivalent
p-regular links, there exists a locally unknotted isotopy H : Ln × [0, 1] → M such that
h0(Ln) = L and h1(Ln) = L′. We will denote by Lt the link ht(Ln), for each t ∈ [0, 1].

By general position, we can assume that the set SingH of the singular points of
H(Ln × [0, 1]) is a 1-subcomplex of M and that H(Ln × [0, 1]) meets transversally the
singular set Sp in a finite number of non-singular points Pi = H(xi, ti) with i = 1, 2, . . . , n,
such that 0 < t1 < t2 < · · · < tn < 1. For each i = 1, 2, . . . , n, let Di be a closed disk in
H(Ln×]ti−1, ti+1[)−(SingH∪S′

p) such that Pi ∈ IntDi and the set Lti ∩Bd Di consists of
exactly two points Qi, Ri (put t0 = 0 and tn+1 = 1). Moreover, let β′

i = {H(x, t) ∈ BdDi |
t < ti} and β′′

i = {H(x, t) ∈ BdDi | t > ti} be the components of BdDi − {Qi, Ri}. Up
to ε-isotopy rel Sp, we can assume Di as it appears in Fig. 3, where p is locally induced
by the symmetry with respect to the vertical axis Sp.

Ri

Pi
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Qi

Sp Bp

p

Figure 3.

β′
i

β′′
i

Then, the links L′
ti

= (Lti
− IntDi) ∪ β′

i and L′′
ti

= (Lti
− IntDi) ∪ β′′

i are p-regular
and their projections p(L′

ti
) and p(L′′

ti
) differ by a local move I.

For each i = 0, 1, . . . , n, the links L′′
ti

and L′
ti+1

are isotopically equivalent in M −
Sp (put L′′

t0 = L and L′
tn+1

= L′). Then, there exists a finite sequence of links L′′
ti

=
C0, C1, . . . , Cni

= L′
ti+1

such that Cj is obtained from Cj−1 by an elementary deformation
in M − Sp for each j = 1, . . . , ni.

Moreover, we can assume that the disk Dj which realizes the elementary deformation
between Cj−1 and Cj is contained in a 3-ball Tj ⊂ M − Sp such that pj = p|Tj

: Tj →
p(Tj) is a homeomorphism. Finally, by general position we can assume that Dj meets
transversally S′

p and p−1
j (p(Cj−1 −Tj)∩p(Tj)) in a finite number of interior points. Then,

the projections p(Cj−1) and p(Cj) differ (up to isotopy of S3 rel Bp) by a finite sequence
of local moves II and III. Namely, we have a move of type II for each point in Dj ∩S′

p and
a move of type III for each point in Dj ∩ p−1

j (p(Cj−1 − Tj) ∩ p(Tj)).
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Remark 1. The theory could be extended to arbitrary (non necessarily simple) branched
coverings p : M → S3. In this context we have, in addition to move III, a countable set of
moves In (see Fig. 4). The first two of these moves, namely I0 and I1, coincide respectively
with the moves II and I.

Figure 4.
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Remark 2. In the next sections, we need to consider also the weaker notion of topological
equivalence for links in a 3-manifold M , namely the equivalence up to homeomorphism
(not necessarily isotopic to the identity). In this case all the labelled Reidemeister moves
on diagrams (also the ones moving the branching set) can be allowed. Moreover, for simple
3-fold coverings diagrams, covering moves introduced in [10] could be used in order to make
the representation independent from the covering.

Special configurations.

In this section we use the moves introduced above, in order to get special configurations
for the projections of links. We start up by observing that projections of links can be untied.

Proposition 3. Let M be a closed orientable 3-manifold and p ∈ S(M). Then every link

L ⊂ M is isotopically equivalent to a p-regular link L′ ⊂ M such that p(L′) is a trivial

link in S3.

Proof. We can assume (up to ε-isotopy) that L itself is p-regular. We can also assume
(up to isotopy) that L has a p-diagram such that any crossing of p(L) involves strings
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Figure 5.
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with different labels (see Fig. 5). Then, we can invert a suitable set of crossings of p(L),
by using move III, in order to get a p-diagram of a link L′ isotopically equivalent to L,
such that p(L′) is a trivial link.

In the following, we need the move J depicted in Fig. 6, which modify the branching
set keeping the link projection fixed. Such a move is equivalent (up to isotopy of S3) to
one move I or two moves II depending on the labels, so it changes a p-diagram of a link
into a p′-diagram of a new link topologically equivalent to the original one (see remark 2).
Of course, this last diagram can also be regarded as a p′′-diagram of the original link itself.
We remark that both the coverings p′ and p′′ are topologically equivalent to p.

J

Figure 6.
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Now, denoting by ρ, θ and z the usual cylindrical coordinates on R3, let Tn be a
trivial n-link whose k-th component is contained in the half-plane θ = 2πk/n and meets
the truncated cylinder C = {(ρ, θ, z) | ρ ≤ 2 and |z| ≤ 1} in the vertical string determined
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by ρ = 1 (see Fig. 7). By using move J, we can obtain the special configurations for link
diagrams described in the next proposition, where S3 is thought as R3 ∪ {∞}.

Proposition 4. Let M be a closed orientable 3-manifold. Then for every n-link L ⊂ M

there exists p ∈ S(M) of any given topological type, such that p(L) = Tn and Bp ⊂ C is

a closed braid around the z-axis. If L is a knot (n = 1), then T1 can be replaced by the

z-axis itself.

Proof. Let L ⊂ M any n-link. By Proposition 3 and isotopy of S3, we obtain a p-diagram
of L, with p ∈ S(M) of any given topological type, such that p(L) = Tn and Bp ⊂ C.
Then we modify p by using move J, in order to make the branching set Bp into a closed
braid around the z-axis. Namely, we apply to Bp the Alexander-Birman algorithm (see
Chap. 2 of [2]) with some minor modifications. After Bp has been oriented in any way,
the algorithm consists of a finite sequence of tooth moves replacing negative edges with
positive ones (see Fig. 8-a). By scaling along the z-axis we can assume that all these
moves take place inside C. Whitout loss of generality, we can also assume that the triangle
(tooth) involved in each move meets Tn at most in one point. Then, we modify any tooth
which meets Tn as shown in Fig. 8-b, in order to realize it by a move J.

If n = 1, we can assume that p(L) is the z-axis itself and apply to Bp the Alexander-
Birman algorithm with all teeth modified as depicted in Fig. 8-c.

– 7 –



+ +

+ +

+

+

+

−

z z

Figure 8.
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Now, we adapt the technique introduced in [5], in order to obtain a universal config-
uration for link projections from the special one given by the previous proposition.

Proposition 5. Let L ⊂ M be any link in a closed orientable 3-manifold. Then there

exists a branched covering q : M → S3 whose branching indices are 2 and 4, such that

Bq is the Borromean link and q(L) is parallel to a component of Bq (i.e. there exists an

embedded annulus between q(L) and such component, whose interior is disjoint from Bq).

Proof. We start up by considering a 3-fold covering p ∈ S(M) with the properties stated
in Proposition 4. Inside C we have (up to isotopy of S3) the situation sketched in Fig. 9,
where the horizontal braid representing Bp has to be thought trivially closed and at each
crossing the horizontal string can run either under or over the vertical one contained in
p(L) = Tn.

Figure 9.

Bp
open
braid

p

. . .

. . .

. . .

. . .

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

(L)

open
braid

open
braid

Then we apply to Bp ⊂ C all the modifications described in the proof of Theorem
1.1 of [5] up to Fig. 1.9 (note that the new strings added in Fig. 1.4 of [5] run under the
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link components). In this way, we get a new covering p′ ∈ S(M) such that the part of the
diagram depicted in Fig. 9 becomes as in Fig. 10.

Figure 10.
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Now we operate on each one of the crossings between Bp′ and p′(L), in the following
way: a) if Bp′ run under p′(L) and their labels at the crossing are not disjoint, we insert a
small trivial loop to Bp′ with monodromy (i t), where the label t corresponds to an extra
trivial sheet being added to the covering, in order to make the labels disjoint, and then
invert the crossing by using move I (see Fig. 11); b) if Bp′ run under p′(L) and their labels
at the crossing are already disjoint, we directely invert the crossing by applying a move
I and then insert a fake (with trivial monodromy) small loop to Bp′ , in order to get the
same configuration as above; c) if Bp′ run over p′(L) we only insert a small fake branch
loop around the crossing.

i

(i j)(i j)

i

(i j)(i j)

(i t)(i t)

t)(jt)(j

i

i

(i j)(i j)

(i t)(i t)

t)(j

Figure 11.

At this point, we have a covering p1 ∈ S(M) whose branching link has a “toroidal
symmetry” as in Fig. 1.10 of [5], such that each component of p1(L) coincides with a fake
meridian component of Bp1 . From now on, the proof of Theorem 1.1 of [5] (from Fig. 1.10
to the end) applies without any change, in order to get a (non-simple) covering q′ : M → S3

with the following properties: a) Bq′ is a Borromean link, b) q′(L) is a component of Bq′ ,
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c) L is contained in the pseudo-singular link S′
q′ , d) the branching indices of q′ are 2 and

4.

We now change q′(L) into a parallel curve, by a small locally unknotted isotopy.
Property c) allows us to lift this isotopy to an isotopy of L in M , which can be realized
by an ambient isotopy H : M × [0, 1] → M . Then, the composition q = q′ h1 has the
properties required in the statement.

Remark 6. Other universal configurations for link projections can be obtained starting
from the one given by the previous proposition. In example, Bq can be any non-toroidal
two-bridge link in S3 and q(L) any component of it (see [6]).

Applications to fibered links.

In this section we use generalized p-diagrams and moves, in order to give unified proofs
(based on Lemma 7) of two different results on existence of fibered links in 3-manifolds.
We recall that a link L in a closed orientable 3-manifold M is called a fibered link if it is
the binding link of an open book decomposition of M .

First of all, we need to generalize our notion of link p-diagram, using multiple labels
in order to represent any sublink L of the counterimage of a link L ⊂ S3 − Bp.

More precisely, given a p-diagram D of a 3-manifold M and a link L ⊂ S3 − Bp such
that the projection of L in the plane of D gives rise, together with D itself, to a diagram
of L ∪ Bp, we represent L ⊂ p−1(L) ⊂ M by labelling each overpass Oj of L with all the
numbers of the sheets which meet p−1(Oj) ∩ L.

We also need to consider the generalized moves depicted in Fig. 12, where A and B are
arbitrary multiple labels and A′ corresponds to A under the transposition (i j), and give
conditions on the labels so that such moves induce isotopy or free homotopy on L ⊂ M .

It is easy to realize that: a) move I induces isotopy if {i, j} 
⊂ A, while it induces
only homotopy if {i, j} ⊂ A (in this case L canghes into a new link L′ ⊂ M which is
equivalent to L except for the clasp shown in Fig. 13); b) move II can be applied if and
only if {i, j}∩A = ∅ or {i, j} ⊂ A and it induces isotopy in the first case and homology in
the second one; c) move III induces isotopy if A ∩ B = ∅, otherwise it induces homotopy.
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Analogously, the generalized move J represented in Fig. 14 change a p-diagram of a
link into a p′-diagram of a new link which is topologically equivalent to the original one if
{i, j} 
⊂ A and homotopic to the original one if {i, j} ⊂ A.

By using move J, we prove the following lemma, where S3 is thought as R3 ∪ {∞}.

Lemma 7. Let M be a closed orientable 3-manifold. Then, for any p ∈ S(M) such that

Bp ⊂ R3 − z-axis, there exists p′ ∈ S(M) topologically equivalent to p such that Bp′ is

a closed braid around the z-axis and the link L′ = p′−1(z-axis ∪ {∞}) is homotopically
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equivalent to the link L = p−1(z-axis ∪ {∞}). Moreover, if L = L1 ∪ L2 with L1 and L2

disjoint sublinks of L, then we can choose L′ = L1 ∪ L′
2 with L′

2 isotopically equivalent to

L2.

Proof. The first part of the lemma can be easily proved with the same technique used in
the proof of Proposition 4. That is, given a covering p as in the statement, we make Bp

into a braid around the z-axis, by means of the generalized move J described above. In
this way we get a new covering p′ with the required properties.

In order to prove the second part of the lemma, it is enough to show that, if L =
L1∪L2, then Bp can be made into a braid around the z-axis, using only generalized moves
J such that the labels i and j involved in the transposition do not correspond to the same
sublink L1 or L2. In fact, in this way we get L′ = L′

1∪L′
2, where L′

1 and L′
2 are respectively

isotopically equivalent to L1 and L2. Hence, up to an isotopy relating L1 to L′
1, we can

assume L′
1 = L1.

So, assume that, applying the algorithm described in the proof of Proposition 4, a
move J is needed, such that the labels i and j involved in the transposition correspond
to the same sublink L1 or L2 (see Fig. 15-a). Let k any label corresponding to the other
sublink. Since the monodromy of p is transitive, starting from any positive edge of Bp, by
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using isotopy and, if necessary, a move J with transposition (j k), we can obtain a positive
edge of Bp labelled by (j k) (as in Fig. 15-b), without introducing any new negative edge.
Now, we can push part of this edge inside the cell where the original move J should take
place (as shown in Fig. 15-c), in order to change the label A into A′, where j and k are
swapped. This makes the “bad” move J into a “good” one.

Figure 15.
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We conclude with the following two propositions, which extend analogous results
respectively obtained by Harer in [3] for knots and by Stallings in [13] for links in S3.

Proposition 8. Let L ⊂ M be a link in a closed orientable 3-manifold. Then L is

homotopically equivalent to a fibered link if and only if L is homologically trivial.

Proof. The “only if” part is obvious. So we prove only the “if” part. Given a homologically
trivial link L ⊂ M , there exists an orientable surface F ⊂ M such that BdF = L. Let
q : F → D be a simple d-fold covering (with d ≥ 3) onto a trivial disk D ⊂ S3. After q has
been extended to regular neighborhoods, we apply Theorem 6.3 of [1] in order to extend
it to a covering p ∈ S(M). Without loss of generality, we can assume that BdD coincides
with the z-axis ∪ {∞} ⊂ R3 ∪ {∞} 5 S3, hence p−1(z-axis ∪ {∞}) = L. By using Lemma
7, we get a new covering p′ ∈ S(M) such that Bp′ is a closed braid around the z-axis
and p′−1(z-axis ∪ {∞}) = L′ is a link homotopically equivalent to L. Now, the trivial
open book decomposition of S3 whose binding is the z-axis ∪ {∞} lifts to an open book
decomposition of M whose binding is L′ (see Proposition 9.7 of [1]). So L′ is a fibered link
in M .

Proposition 9. Let L ⊂ M be a link in a closed orientable 3-manifold. Then there exists

a link L′ ⊂ M such that L∪L′ is a fibered link. Moreover L′ can be choosen in any isotopy

class of links homologically equivalent to L.
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Proof. Let L′′ ⊂ M − L be any link homologically equivalent to L. As in the proof
of Proposition 8, we can construct p ∈ S(M) such that p−1(z-axis ∪ {∞}) = L ∪ L′′. By
using Lemma 7, we get a new covering p′ ∈ S(M) such that Bp′ is a closed braid around
the z-axis and p′−1(z-axis ∪ {∞}) = L ∪ L′, with L′ isotopically equivalent to L′′. Then
we conclude, as in the proof of Proposition 8, that L ∪ L′ is a fibered link in M .
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203–230.
[8] J.F.P. Hudson and E.C. Zeeman, On combinatorial isotopy, Publ. I.H.E.S. 19 (1964),

69–94.
[9] J.M. Montesinos, A representation of closed, orientable 3-manifolds as 3-fold branched

coverings of S3, Bull. Amer. Math. Soc. 80 (1974), 845–846.
[10] R. Piergallini, Covering moves, Trans. Amer. Math. Soc. 325 (1991), 903–920.
[11] D. Rolfsen, Knots and Links, Publish or Perish, Inc. 1976.
[12] C. Rourke and B. Sanderson, Introduction to piecewise-linear topology, Springer-

Verlag 1972.
[13] J.R. Stallings, Constructions of fibered knots and links, Proceedings of Symposia in

Pure Mathematics 32 (1978), 55–60.

– 14 –


