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Abstract

We prove the long-standing Montesinos conjecture that any closed oriented PL
4-manifold M is a simple covering of S4 branched over a locally flat surface (cf.
[12]). In fact, we show how to eliminate all the node singularities of the branching
set of any simple 4-fold branched covering M → S4 arising from the representation
theorem given in [13]. Namely, we construct a suitable cobordism between the 5-
fold stabilization of such a covering (obtained by adding a fifth trivial sheet) and
a new 5-fold covering M → S4 whose branching set is locally flat. It is still an
open question whether the fifth sheet is really needed or not.
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Introduction

The idea of representing manifolds as branched covers of spheres, extending the
classical theory of ramified surfaces introduced by Riemann, is due to Alexander [1]
and dates back to 1920. He proved that for any orientable closed PL manifold M of
dimension m there is a branched covering of M → Sm.

We recall that a non-degenerate PL map p : M → N between compact PL
manifolds is called a branched covering if there exists an (m−2)-subcomplex Bp ⊂ N ,
the branching set of p, such that the restriction p| : M − p−1(Bp) → N − Bp is an
ordinary covering of finite degree d. If Bp is minimal with respect to such property,
then we have Bp = p(Sp), where Sp is the singular set of p, that is the set of points
at which p is not locally injective. In this case, both Bp and Sp, as well as the
pseudo-singular set S ′

p = Cl(p−1(Bp) − Sp), are (possibly empty) homogeneously
(m − 2)-dimensional complexes.

Since p is completely determined (up to PL homeomorphism) by the ordinary
covering p| (cf. [3]), we can describe it in terms of its branching set Bp and its
monodromy ωp : π1(N − Bp) → Σd (uniquely defined up to conjugation in Σd,
depending on the numbering of the sheets).



If N = Sm then a convenient description of p can be given by labelling each
(m− 2)-simplex of Bp by the monodromy of the corresponding meridian loop, since
such loops generate the fundamental group π1(S

m − Bp).
Therefore, we can reformulate the Alexander’s result as follows: any orientable

closed PL manifold M of dimension m can be represented by a labelled (m − 2)-
subcomplex of Sm.

Of course, in order to make such representation method effective, some control
is needed on the degree d and on the complexity of the local structure of Bp and
ωp. Unfortunately, there is no such control in the original Alexander’s proof, being
d dependent on the number of simplices of a triangulation of M and Bp equal to
the (m − 2)-skeleton of an m-simplex. Even at the present, as far as we know, the
only general (for any m) results in this direction are the negative ones obtained by
Berstein and Edmonds [2]: for representing all the m-manifolds at least m sheets
are necessary (for example this happens of the m-torus Tm) and in general we
cannot require Bp to be non-singular (the counterexamples they give have dimension
m ≥ 8). On the contrary, the situation is much better for m ≤ 4.

The case of surfaces is trivial: the closed (connected) orientable surface Tg of
genus g is a 2-fold cover of S2 branched over 2g + 2 points. For m = 3, Hilden
[4], Hirsch [6] and Montesinos [11] independently proved that any orientable closed
(connected) 3-manifold is a simple 3-fold cover of S3 branched over a knot.

For m = 4, the representation theorem proved by Piergallini [13] asserts that any
orientable closed (connected) PL 4-manifold is a simple 4-fold cover of S4 branched
over a transversally immersed PL surface. Simple means that the monodromy of
each meridian loop is a transposition. On the other hand, a transversally immersed
PL surface is a subcomplex which is a locally flat PL surface at all its points but a
finite number of nodes (transversal double points). So, the local models (up to PL
equivalence) for the labelled branching set are the ones depicted in Figure 1, where
{i, j, k, l} = {1, 2, 3, 4} (the monodromies of the meridian loops corresponding to
sheets of the branching set meeting at a node must be disjoint). We remark that in
general the branching surface cannot be required to be orientable (cf. [13], [14]).

(k l)

(i j)(i j)

Figure 1.

The question whether the nodes can be eliminated in order to get non-singular
branching surfaces, as proposed by Montesinos in [12], was left open in [13].

In the next section we show how elimination of nodes can be performed up
to cobordism of coverings, after the original 4-fold covering has been stabilized by
adding a fifth trivial sheet. This proves the following representation theorem.

Theorem. Any orientable closed (connected) PL 4-manifold is a simple 5-fold
cover of S4 branched over a locally flat PL surface.
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1. Elimination of nodes

Let M be an orientable closed (connected) PL 4-manifold and let p : M → S4

be a 4-fold covering branched over a transversally immersed PL surface F ⊂ S4

given by Theorem B of [13]. We denote by q : M → S4 the 5-fold branched covering
obtained by stabilizing p with an extra trivial sheet. In terms of labelled branching
set this means adding to the surface F , labelled with transpositions in Σ4, a separate
unknotted 2-sphere S labelled with the transposition (4 5), as schematically shown
in Figure 2.

S

(4 5)

Labelled surface F

Figure 2.

Looking at the proof of Theorem B of [13], we see that nodes of the branching
set of p come in pairs, in such a way that each pair consists of the end points of a
simple arc contained in F and all these arcs are disjoint from each other.

Let α1, . . . , αn ⊂ F be such arcs and let νi and ν ′
i be the nodes joined by αi. The

intersection of F ∪ S with a sufficiently small regular neighborhood N(αi) of αi in
S4 consists of a disk Ai containing αi and two other disks Bi and B′

i transversally
meeting Ai respectively at νi and ν ′

i. Up to labelled isotopy, we can assume Bi and
B′

i labelled with (1 2) and Ai labelled with (3 4), as in Figure 3 (remember that the
monodromy of p is transitive, since M is connected). We also assume the N(αi)’s
disjoint from each other.

N(αi)

AiBi B′
i

(1 2) (1 2)

ν′
iνi αi

(3 4)

Figure 3.

For future use, we modify the branching surface F ∪S by “finger move” labelled
isotopies, in order to introduce inside each N(αi) two more small trivial disks Ci and
C ′

i respectively labelled by (2 4) and (4 5), as shown in Figure 4. This modification
has the effect of connecting q−1(N(αi)) making it PL equivalent to S1 × B3.

Now, we consider the orientable 5-manifold T = S4 × [0, 1] ∪ H1 ∪ . . . ∪ Hn

obtained by attaching to S4 × [0, 1] a 1-handle Hi for each pair of nodes νi, ν ′
i.

The attaching cells of each Hi are N(νi) × {1} and N(ν ′
i) × {1}, where N(νi) and

N(ν ′
i) are regular neighborhoods νi and ν ′

i in N(αi) − (Ci ∪ C ′
i), such that all the

intersections Di = N(νi)∩Ai, Ei = N(νi)∩Bi, D′
i = N(ν ′

i)∩Ai and E ′
i = N(ν ′

i)∩B′
i

are again disks.
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(3 4)
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ν′
iνi

Ci C ′
i

Figure 4.

The product covering q × id[0,1] : M × [0, 1] → S4 × [0, 1] can be extended to a
new 5-fold simple branched covering r : W → T , where W is the result of adding
appropriate 1-handles to M × [0, 1] over the H ′

is. In fact, the restrictions of q × {1}
over N(νi) × {1} and N(ν ′

i) × {1} are equivalent, hence, by a suitable choice of the
attaching map of Hi, we can define r over Hi 5 B4 × [0, 1] just by crossing the first
restriction with the identity of [0, 1]. Namely, the pair (Hi, Br ∩Hi) is equivalent to
(N(νi), Di∪Ei)× [0, 1], with the monodromy of the meridian loops around Di× [0, 1]
and Ei × [0, 1] respectively equal to (1 2) and (3 4). Then, r−1(Hi) consists of three
1-handles attached to M × [0, 1] at the three pairs of 4-cells making up the pair
(q−1(N(νi)), q

−1(N(ν ′
i))) × {1}. We denote by H ′

i, H ′′
i and H ′′′

i these 1-handles in
such a way that they involve respectively the sheets 1 and 2, the sheets 3 and 4, and
the sheet 5 (see Figure 5, where the lighter lines represent the pseudo-singular set).
We remark that the branching set Br is a locally flat PL 3-manifold at all points
but one transversal double arc inside each Hi between νi × {1} and ν ′

i × {1}.

Di
D′

i

Ei E

r

′
i

i

(1 2) (3 4)

H ′′′
i

sheets 1,2

sheets 3,4

sheet 5

H ′′
i

H ′
i

H

Figure 5.

At this point, we want to simultaneously attach to T and W some 2-handles
in order to kill the 1-handles H1, . . . , Hn attached to S4 × [0, 1] and the 1-handles
H ′

1, H
′′
1 , H ′′′

1 , . . . , H ′
n, H

′′
n, H ′′′

n attached to M × [0, 1], taking care that the branched
covering r can be extended to these 2-handles.
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For each i = 1, . . . , n, we consider a simple loop λi inside Bd T ∩ (N(αi) ×
{1} ∪ Hi) − Br running through Hi once and linking both the disks Ci × {1} and
C ′

i × {1} once, as shown in Figure 6. We observe that r−1(λi) consists of three
loops λ′

i, λ
′′
i , λ

′′′
i ⊂ Bd W − (Sr ∪ S ′

r), such that: λ′
i runs through H ′

i once and avoids
H ′′

i ∪H ′′′
i , λ′′

i runs through H ′′
i once and avoids H ′

i ∪H ′′′
i , while λ′′′

i runs through each
of H ′

i, H ′′
i and H ′′′

i once.

(2 4) (4 5)
λi

iH

N(αi)

Figure 6.

Then, the 5-manifold T ∪L1 ∪ . . .∪Ln obtained by attaching to T the 2-handle
Li along each loop λi (with arbitrary framing), is PL homeomorphic to S4 × [0, 1],
since each Li kills the corresponding Hi.

Analogously, the 5-manifold W ∪ (L′
1 ∪L′′

1 ∪L′′′
1 )∪ . . .∪ (L′

n ∪L′′
n ∪L′′′

n ) obtained
by attaching to W the 2-handles L′

i, L′′
i and L′′′

i along the loops λ′
i, λ′′

i and λ′′′
i (with

arbitrary framings), is PL homeomorphic to M × [0, 1]. In fact, we can cancel first
each L′′′

i with the corresponding H ′′′
i and then each L′

i and L′′
i respectively with H ′

i

and H ′′
i .

By choosing the attaching framings of the 2-handles L′
i, L′′

i and L′′′
i accordingly

with the ones of the 2-handle Li, we can extend the covering r to such 2-handles as
suggested by Figure 7, where the branching set consists of the labelled 3-cells Fi and
Gi transversal to the 2-handle Li. Namely, we can glue the covering represented in
the figure with r, since they coincide over the attaching tube around λi. Then, we can
identify L′

i and L′′
i respectively with the trivial components over Li corresponding

to sheets 1 and 3, and L′′′
i with the non-trivial component over Li corresponding to

sheets 2, 4 and 5.

Fi Gi

(2 4) (4 5)

Li

λi

Figure 7.

In this way, we get an extension of r which is PL equivalent to a new branched
covering s : M × [0, 1] → S4 × [0, 1]. Up to the natural identification between fibers
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and factors, the restriction of s over S4 ×{0} coincides with q, while the restriction
over S4 × {1} gives us a new 5-fold simple branched covering q′ : M → S4.

The branching set Bq′ of q′ is a locally flat PL surface in S4. In fact, it is
isotopically equivalent to the result of the following modifications performed on
Bq = F ∪ S, due to attaching handles: for each i = 1, . . . , n, the disks Di, D′

i, Ei

and E ′
i are replaced by linked pipes respectively connecting Bd Di with Bd D′

i and
Bd Ei with Bd E ′

i; for each i = 1, . . . , n, the new trivial spheres Bd Fi and Bd Gi are
added on.

2. Final remarks

The argument used in the previous section for eliminating nodes, with some
minor variation, allows us to perform a variety of different modifications on branched
coverings.

We can eliminate any pair of isolated singularities of the branching set, which
are equivalent up to orientation reversing PL homeomorphisms, provided that the
covering has at least one sheet more than the ones involved in them. For instance,
this is a way, alternative with respect to the one of [13], to remove cusps from the
branching set of a simple 4-fold covering of S4.

On the other hand, by choosing the attaching balls of the 1-handle Hi centred at
two non-singular points of the branching set with the same monodromy and letting
the attaching loop of the 2-handle Li have trivial monodromy, we get a new approach
to surgery of simple branched coverings along symmetric knots (see [12]). In fact, in
this case we have d− 1 handles over Hi and d handles over Li, where d is the degree
of the covering, and after cancellation we are left with one 2-handle attached to the
covering manifold along the unique loop in the counterimage of the arc αi. Surgeries
of greater indices (see [5]) can be realized similarly.

With a different choice of the monodromies, we can also perfom surgeries on the
branching set without changing the covering manifold up to PL homeomorphisms.
In particular, we get the move shown in Figure 8, which is the double of the move
in Figure 12 of [13].

(i k)

(i j) ( k)j(i j) ( k)j

Figure 8.

By using this move, we can connect all the non-trivial components of the branch-
ing surface, provided that the degree of the covering is at least 3, in such a way that
the branching surface of the theorem can be assumed to have the following special
form: F = G∪S1 ∪ . . .∪Sk, where G ⊂ S4 is connected and S1, . . . , Sk is a family of
separate trivial 2-spheres. Furthermore, we can perform hyperbolic transformations
of G in order to make it unknotted (cf. [7], [8]).

We observe that, in some sense, G represents the cobordism class of the covering
manifold M , being σ(M) = −F ·F/2 = −G ·G/2 (cf. [14]). On the other hand, the
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Si’s cannot be eliminated in general, that is the branching surface cannot be required
to be connected. In fact, given any covering M → S4 branched over a locally flat
PL surface F , we have χ(M) = 2d − χ(F ), where d is the degree of the covering.
Then, by the Whitney inequality for the self-intersection of non-orientable surfaces
in S4 (cf. [10]), F must have at least d + |σ(M)|/2 − χ(M)/2 components.

Finally, we remark that our argument heavily depends on the fifth extra sheet
for the elimination of nodes, hence it seems useless for solving the following question
that remains still open (cf. Problem 4.113 of Kirby’s problem list [9]):

Question. Is any orientable closed (connected) PL 4-manifold a simple 4-fold
cover of S4 branched over a locally flat PL surface?
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