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R. PIERGALLINI
Dipartimento di Matematica
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ABSTRACT

Covering moves introduced in [6] are used in order to a�rmatively answer the question posed
by Montesinos in [3]. As an application, we prove that every closed orientable PL 4-manifold
is a 4-fold simple covering of S4 branched over a transversally immersed PL surface.

Introduction

In [3] Montesinos asks if the moves C± and N± described in figure 1, su�ce in
order to relate any two simple 4-fold coverings p1, p2 : #n(S1⇥S2)! S3 branched over
a link and coming from 3-fold coverings by addition of a trivial sheet.

He also observes that, if this is the case, then every closed oriented PL 4-manifold
is a simple 4-fold covering of S4 branched over an immersed PL surface with only cusp
and node singularities, that is singularities which are topologically equivalent to cusps
and nodes of algebraic curves in the complex plane.
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In section 1 of this paper (Theorem A), we a�rmatively answer the Montesinos’s
question, by proving that moves C± and N± allows us to relate any two coverings as
above, which represent the same 3-manifold (not necessarily #n(S1 ⇥ S2)).

In section 2 (Theorem B), we improve the above mentioned application to 4-
manifolds, by showing that in fact all the cusps of the branch surface can be eliminated,
in such a way that we get a transversally immersed surface, that is a surface which is
locally flat except for a finite number of transversal double points.

This is the main result of our work, since it is, as far as we know, the first general
result in representing all 4-manifolds as branched covering spaces of S4, with a bounded
(in fact the minimum possible, cf. [1]) number of sheets.

In section 3 (Problem C) we briefly discuss the possibility of getting a locally flat
branch surface.
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1. Equivalence of simple branched coverings of S3

In [6] it is proved that any two 3-fold simple coverings of S3 branched over a link,
representing the same 3-manifold, can be related by a finite sequence of moves C±

and moves as described in figure 2 (where transpositions give, as well as in figure 1,
the monodromy of the meridians around the corresponding bridges, of course up to
conjugation in S3, and L,L0 are two arbitrary links).

In this section, we use such moves in order to prove the following theorem, which
provides an a�rmative answer to the Montesinos’s question mentioned in the introduc-
tion.

Theorem A. Any two simple 4-fold coverings of S3 branched over a link and
coming from 3-fold coverings by addition of a trivial sheet, which represent the same
3-manifold, can be related by a finite sequence of moves C± and N±.

Proof. We need only to prove that, in presence of a fourth trivial sheet, that is of an
unknotted and unlinked component of the branch link whose meridian has monodromy
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(3 4), moves II–IV can be generated by moves C± and N±. That is done in the figures
3, 4 and 5.

We conclude this section with the following question, that is naturally suggested
by the theorem above.

Question. Are the moves C± and N± (perhaps together with addition/deletion of
trivial sheets) su�cient in order to relate any two simple 4-fold (n-fold) branched (over
a link) coverings of S3 representing the same 3-manifold?
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2. Four-manifolds as 4-fold branched covers of S4

As observed by Montesinos in [3], an immediate consequence of theorem 6 of [4] and
our theorem A is that every closed oriented PL 4-manifold is a simple 4-fold covering of
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S4 branched over an immersed PL surface with only node and cusp singularities. This
section is completely dedicated to prove the following improvement of such fact.
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Theorem B. Every closed oriented PL 4-manifold is a simple 4-fold covering of
S4 branched over a transversally immersed PL surface.

Proof. Let M be a closed oriented PL 4-manifold. Following Montesinos (cf. [3]),
we start by considering a covering p : M ! S4 branched over an immersed PL surface
F with only node and cusp singularities. For sake of completeness, we include a sketch
of construction of such a covering.
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By using a handlebody decomposition of M , we can write M = M0 [ M1 with
M1 5 #n(S1⇥B3). Moreover, by [4], there exist two simple 3-fold coverings ⇡ : Mi ! B4

branched over PL regularly imbedded surfaces Fi ⇢ B4. Let epi denote the covering ob-
tained by adding a trivial sheet to pi and ri denote the restriction of epi to the boundary.

Then, we can apply theorem A in order to get a finite sequence of moves C± and
N± connecting r0 to r1. Now it is quite easy (cf. [3]) to construct a simple 4-fold covering
r : #n(S1 ⇥ S2)⇥ [0, 1]! S3 ⇥ [0, 1] branched over a PL immersed surface with a cusp
for every move C± and a node for every move N±, whose restriction to the boundary
coincides with r0 [ r1.

Finally, by gluing the coverings ep0, r and ep1 together, along their boundaries, we
obtain a branched covering p : M ! S4 (whose covering space is M because of [5]), as
required.

We can assume that F � {singular points} is connected. In fact if F1 and F2 were
distinct components of it, then we could connect them by a simple arc, and insert two
cusps inside a small regular neighborhood of such an arc, as sketched in figure 6, in
order to get only one component.

F1 F2

N+ N−

Figure 6.

Now we pass to show how to eliminate all the cusps of the branch surface F of the
covering p obtained above.

First of all, we note that the restriction of the covering p over a neighborhood of a
cusp of F looks like the cone of an irregular 3-fold covering of S3 onto itself branched
over a trefoil knot, plus a disjoint trivial fourth sheet. So we can say that such a cusp
is a left- or right-handed one, according to the corresponding trefoil knot in S3. Then,
we can associate to p the number

�(p) = (# of left-handed cusps)� (# of right-handed cusps).

…
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We claim that �(p) ⌘ 0 mod 3. By [2], this is true for any 3-fold covering p0 of S4

branched over an orientable surface with only cusp singularities. Hence, it su�ces to
show that there exists such a covering p0, with �(p) ⌘ �(p0) mod 3.

We start by observing that the moves II–IV of figure 2 can be realized by means
of cobordisms (non-oriented for move II) respecting the monodromy, without using the
fourth sheet and the moves N±. In fact, by replacing 4 by 3 in figure 3 (c) and (d), we
get a link which is obviously cobordant to both the braids of move II. The same is true
for figure 4 (c) and (d) and move III. For move IV , we cannot use figure 5, but it is
clear that the cobordism can be constructed in a similar way.

Then, by using cobordism, we get a 3-fold covering p00 of S4 branched over a surface
F 00 with only cusp singularities, such that �(p) = �(p00).
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Figure 8.

If F 00 is orientable we put p0 = p00. Otherwise, let � ⇢ F 00 be a simple loop such
that F 00 � � is orientable, D be a locally flat PL disk in S4, such that BdD = � and
IntD is transversal with respect to F 00, and BD be a small regular neighborhood of D
in S4. By looking at the boundary of BD, we have (up to conjugation in S3) the link
represented in figure 7 (where k = #(IntD \ F 00)).

… …
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Figure 9.
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Now, in order to get a covering p0 as required, it is enough to show that such link
bounds an immersed oriented surface in B4 with a number of cusps (counted with sign)
which is a multiple of 3.

Since the loops with �i = (1 2) can be eliminated as shown in figure 8 (a), we can
easily assume (up to conjugation in S3) that �i = (1 3) for every i = 1, . . . , k. Then, we
can also assume that all the small loops in figure 7 are oriented in same way (otherwise
we could simplify the link as shown in figure 8 (b)).

In figure 9 it is shown how to separate the component of the link with monodromy
(1 2), in such a way that we are left (up to oriented cobordism) with k/2 copies of
the link of figure 10 (a). Finally, figure 10 shows how to modify this last link into 3
right-handed trefoil knots, which bound 3 right-handed cusps.
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Figure 10.
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Figure 11 shows how three left-handed cusps can be added in the branch surface
F of the covering p, by means of a sequence of C+ moves; of course, three right-handed
cusps can be added by using C� moves.

Hence, we can assume that �(p) = 0. Then, in order to conclude the proof of the
theorem, it is enough to show how to eliminate a pair of one left- and one right-handed
cusp.

We will use the auxiliary move described in figure 12. Such a move, which is the
composition of two moves of type C, can also be realized without introducing any
cusp. In fact, the intersection of the branch surface F with the boundary of the 4-cell
B 5 E⇥ [0, 1], where E is a small 3-cell inside which the move takes place, is the trivial
link shown in figure 13, so that we can substitute F \B with two disjoint trivial disks.

C−and C+

(i j) (i j)

(j k) (j k)
(i k)

(i j) (i j)

(j k) (j k)

(j k)

(i k)

Figure 12.

E ×

×

{0}

E {1}

Bd B

Figure 13.

Now, let �1 and �2 be a left- and a right-handed cusp arbitrarily chosen in F . Since
we have supposed that F is connected, there exists a simple arc ↵ ⇢ F between �1 and
�2 avoiding all other singularities of F . Let B↵ be a small regular neighborhood of ↵ in
S4, whose boundary meets F transversally.
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τ

τ
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Figure 14.
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Then, F \ BdB↵ is the square knot K = K1 #K2, where Ki is the trefoil knot
corresponding to the cusp �i. Of course, we can assume, up to conjugation, that the
monodromy around �1 is as in figure 14.
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fixes the third sheet

(b) The monodromy around
fixes the fourth sheet
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Figure 15.

(a) The link F ∩ Bd Bα (b) . . . by isotopy

(c) . . . by the move described in figure 7 (d) . . . by isotopy

(e) . . . by two moves of type N (f) . . . by isotopy
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We also assume, for the moment, that the monodromy around �2 fixes the third
sheet, so that B↵ is covered by a 4-cell (cf. figure 15 (a)).

At this point, we have only two possibilities: ⌧1 = (1 4) and ⌧2 = (2 4), or ⌧1 = (2 4)
and ⌧2 = (1 4). In the first case, we can substitute F \ B↵ with the surface described
by the sequence of links in figure 16 (starting from the boundary of B↵ and obviously
ending with trivial disks), which do not contain any cusp. The same technique can be
also used in the second case, except for the fact that now the arc corresponding to ⌧2

play the role of the arc corresponding to ⌧1. In both cases, the manifold covering B↵

after the substitution is still a 4-cell, then the global covering manifold is still M .
Finally, we see what happens when the monodromy around �2 fixes the fourth

sheet, that is ⌧1 = (1 3) and ⌧2 = (2 3), or ⌧1 = (2 3) and ⌧2 = (1 3). As before, we limit
ourselves to deal with the first choice.

In this case, we move a finger of F with monodromy (3 4) inside B↵, in such a way
that looking at BdB↵, we have the situation shown in part (a) of figure 17. Then, the
manifold covering B↵ is homeomorphic to B3 ⇥ S1 (cf. figure 15 (b)).

Figure 17 shows how to start the description of the surface that we substitute to
F \B↵, in order to eliminate the cusps �1 and �2, the rest of such a surface is obtained
adding a trivial loop with monodromy (3 4) to each step of figure 16. As above, the
manifold covering B↵ after the substitution is still homeomorphic to B3 ⇥ S1, then the
global covering manifold is still M (by [5]).

(a) The link F ∩ Bd Bα (b) . . . by isotopy as shown in (a)

(c) . . . by two moves of type N (d) . . . by isotopy
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(3 4)
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(1 2)
(2 3) (2 4)

(1 2)

(3 4)
(1 3) (1 4)

(1 2)

Figure 17.

We conclude the proof by observing that, after the elimination of the two cusps �1

and �2, F � {singular points} is no longer connected. In fact, we have introduced a new
component (the one containing the trivial loop with monodromy (3 4) in figure 16 (f))
inside B↵. Nevertheless, the elimination process can be iterated, since all the remaining
cusps are out of B↵.
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3. Final remarks

First of all, we observe that, if M is a covering of S4 branched over the image of
a transversal immersion of a surface F in S4, then �(M) = 8� �(F ), where � denotes
the Euler-Poincaré characteristic. It follows that F is not orientable if �(M) is odd. So,
we cannot require the orientability of the the branch surface in theorem B.

Anyway, theorem B could be improved by eliminating all the singularities of the
branch surface (cf. [4]). This is not possible for orientable branch surfaces, but in the
general case the following problem is still open.

Problem C. Is every closed oriented PL 4-manifold a simple 4-fold covering of S4

branched over a locally flat PL surface?

Up to unoriented cobordism, the answer to this problem is yes, that is every 4-
manifold is cobordant to a simple 4-fold covering of S4 branched over a locally flat
PL surface. This can be proved by observing that, in the coverings given by theorem
B, double points always occur in pairs (see figures 3–5, 16 and 17), and any pair of
double points can be easily removed by using a piping technique, whitout changing the
cobordism class of the covering manifold. This means that, we can limit ourselves to
study problem C for bounding 4-manifolds.
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