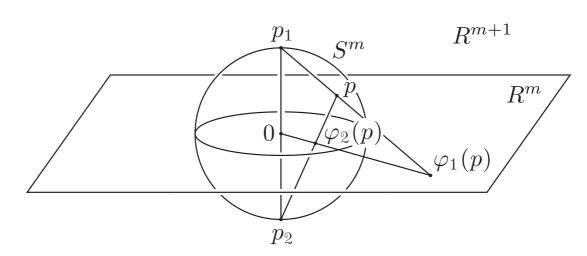
Varietà topologiche

M varietà topologica di dim m (m-varietà topologica) $\stackrel{\text{def}}{\Longrightarrow} M$ spazio top. T_2 , II numerabile e <u>localmente euclideo</u> ($\forall p \in M \; \exists A \subset M \; \text{intorno} \; \underline{\text{aperto}} \; \text{di} \; p$ $\exists \varphi : A \to \varphi(A) \; \text{omeo con} \; \varphi(A) \; \underline{\text{aperto}} \; \text{in} \; R^m$)

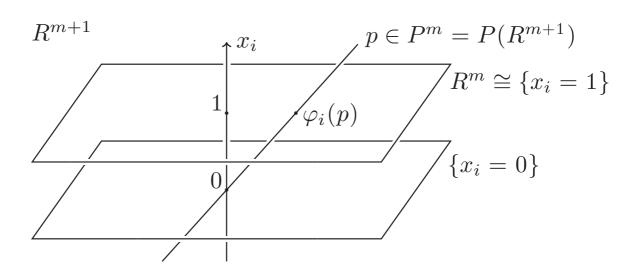
- Note: 1) (A, φ) carta locale di M $\sim (x_1, \dots, x_m)$ coordinate locali su $A \subset M$
 - 2) $\forall p \in M \ \exists (A, \varphi) \ \underline{\text{carta locale speciale}} \ \text{intorno a } p$ tale che: $\varphi(p) = 0, \ \varphi(A) = R^m, \ \text{Cl} \ A \subset M \ \text{compatta}$
 - 3) M localmente euclideo $\Leftrightarrow M = \bigcup_{n \geq 1} A_n$ con (A_n, φ_n) carta locale (speciale) $\forall n \geq 1$ $(\mathcal{A} = \{(A_n, \varphi_n)\}_{n \geq 1}$ atlante (speciale) di M)

Esempi: 1) $M = \text{aperto in } R^m \rightsquigarrow \mathcal{A} = \{(M, \text{id}_M)\}$

2) $S^m \subset R^{m+1} \rightsquigarrow \mathcal{A} = \{(A_i, \varphi_i)\}_{i=1,2}$ carte stereografiche $(A_i = S^m - \{p_i\}, \ \varphi_i : A_i \to R^m \text{ proiezione stereografica definita } \varphi_i(x_1, \dots, x_{m+1}) = (x_1, \dots, x_m)/(1 \pm x_{m+1}))$

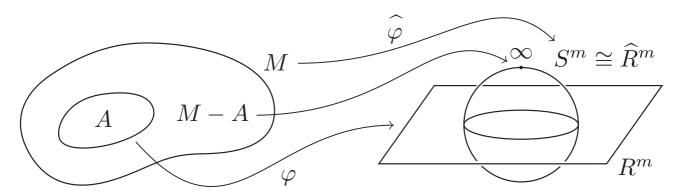


- 3) $T^m \rightsquigarrow \mathcal{A} = \{\text{inverse locali di } \pi : \mathbb{R}^m \to \mathbb{T}^m\}$
- 4) $P^{m} = P(R^{m+1}) \rightsquigarrow \mathcal{A} = \{(A_{i}, \varphi_{i})\}_{i=1,...,m+1} \text{ carte affini}$ $(A_{i} = \{[x_{1},...,x_{m+1}] \in P^{m} | x_{i} \neq 0\}, \ \varphi_{i} : A_{i} \to R^{m}$ definita $\varphi_{i}([x_{1},...,x_{m+1}]) = (x_{1},...,\widehat{x}_{i},...,x_{m+1})/x_{i})$



- Note: 1) M m-varietà top., $N \subset M$ aperto $\Rightarrow N$ m-varietà top. $(\mathcal{A} \leadsto \mathcal{A}_{|N} = \{(A \cap N, \varphi_{|A \cap N}) \mid (A, \varphi) \in \mathcal{A}\})$
 - 2) M_i m-varietà top. $\forall i \Rightarrow M_1 \sqcup \ldots \sqcup M_n$ m-varietà top. $(A_1, \ldots, A_n \rightsquigarrow A = A_1 \cup \ldots \cup A_n)$
 - 3) $M_i m_i$ -varietà top. $\forall i \Rightarrow M_1 \times \ldots \times M_n \Sigma_i m_i$ -varietà top. $(A_i \rightsquigarrow A = \{(A_1 \times \ldots \times A_n, \varphi_1 \times \ldots \times \varphi_n) \mid (A_i, \varphi_i) \in A_i\})$
 - 4) M m-var. top., $p: M \to N$ rivest. finito $\Rightarrow N$ m-var. top. $(\mathcal{A}_M \rightsquigarrow \mathcal{A}_N = \{(B, \psi = \varphi \circ (p_{\parallel})^{-1}) \mid (A_i, \varphi) \in \mathcal{A}_M)\})$
 - 5) M m-var. top., $p: N \to M$ rivest. numer. $\Rightarrow N$ m-var. top. $(\mathcal{A}_M \rightsquigarrow \mathcal{A}_N = \{(A_i, \psi = p_{|} \circ \varphi) \mid (B, \varphi) \in \mathcal{A}_M)\})$

M m-varietà topologica, (A, φ) carta locale speciale $\rightsquigarrow \widehat{\varphi}: M \to S^m \cong \widehat{R}^m$ continua t.c. $\widehat{\varphi}_{|A} = \varphi$ e $\widehat{\varphi}(M - A) = \infty$



<u>Prop.</u> M m-varietà top. compatta (vale per ogni varietà top.) $\Rightarrow \exists M \hookrightarrow R^n \text{ immersione con } n \geq m$

<u>Dim</u>. $\mathcal{A} = \{(A_1, \varphi_1), \dots, (A_k, \varphi_k)\}$ atlante speciale finito \rightsquigarrow $\widehat{\varphi}_1 \times \dots \times \widehat{\varphi}_k : M \to S^m \times \dots \times S^m \subset R^{(m+1)k}$ immersione

Prop. M m-varietà topologica $\Rightarrow M$ metrizzabile

<u>Classificazione delle 1-varietà top.</u> (<u>curve topologiche</u>)

<u>Lemma</u>. M curva topologica \Rightarrow

 $\exists S = \{S_n\}_{n\geq 1}$ ric. num. loc. finito di M (<u>segmentazione</u>) t.c. 1) S_n "segmento" $\forall n \ (\exists h_n : [0,1] \to S_n \text{ omeo})$ 2) $S_{n_1} \cap S_{n_2} = \emptyset$ o "estremo" comune $\forall n_1 \neq n_2$

 $\operatorname{di} C_n - (S_1 \cup \ldots \cup S_{m_{n-1}}))$

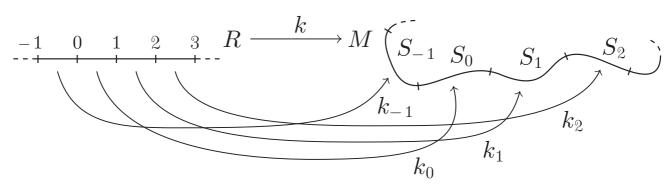
 $\underline{\text{Dim}}. \ \mathcal{A} = \{(A_n, \varphi_n)\}_{n \geq 1} \ \text{atlante speciale numerabile}$ $\text{tale che } M = \bigcup_{n \geq 1} C_n \ \text{con } C_n = \varphi_n^{-1}([-1, 1])$ $\rightsquigarrow \{S_n\}_{n \geq 1} \ \text{t.c. } 1), \ 2) \ \text{e 3}) \ C_1 \cup \ldots \cup C_n \subset S_1 \cup \ldots \cup S_{m_n}$ $\text{(induzione a partire da } m_1 = 1 \ \text{e } S_1 = C_1$ $S_1, \ldots, S_{m_{n-1}} \rightsquigarrow S_{m_{n-1}+1}, \ldots, S_{m_n}$ $= \text{Cl}_{C_n} \text{ componenti connesse}$

 $\underline{\operatorname{Prop}}$. M curva topologica connessa $\Leftrightarrow M \cong \mathbb{R}^1$ o S^1

 $\underline{\mathrm{Dim}}$. ogni "vertice" di $\mathcal S$ è estremo di due "segmenti"

 $\rightsquigarrow \mathcal{S} = \{S_{n_i}\}_{i \in \mathbb{Z}}$ rinumerazione t.c. $S_{n_i} \cap S_{n_{i+1}} \neq \emptyset$ $k_i : [i, i+1] \rightarrow S_{n_i}$ omeo t.c. $k_i(i+1) = k_{i+1}(i)$

 $\rightsquigarrow k = \cup_i k_i : R \to M$ omeomorfismo se M non compatto rivestimento se M compatto

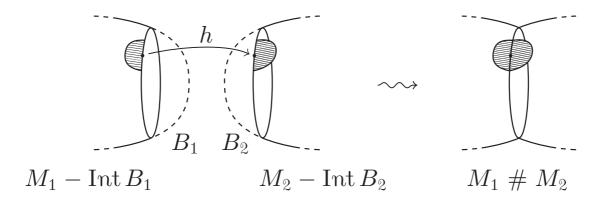


Classificazione delle 2-varietà top. (superfici topologiche)

 M_1, M_2 superfici topologiche connesse

$$\sim M_1 \# M_2 \stackrel{\text{def}}{=} (M_1 - \operatorname{Int} B_1) \sqcup (M_2 - \operatorname{Int} B_2)/p \sim h(p)$$

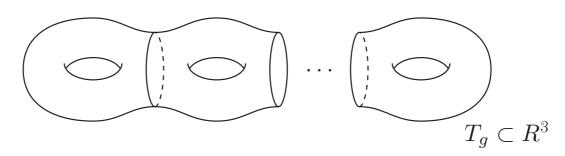
 $\operatorname{con} B_1, B_2 \cong B^2 \text{ e } h : \operatorname{Fr} B_1 \to \operatorname{Fr} B_2 \text{ omeo}$



Note: 1) $M_1 \# M_2$ è una sup. top. connessa (somma connessa) t. di Schönflies $\Rightarrow M_1 \# M_2$ ben definita a meno di omeo

2) # commutativa e associativa, S^2 = elemento neutro

Esempi: $T_g \stackrel{\text{def}}{=} T^2 \# \dots \# T^2 \text{ sup. orientabile di genere } g \ (\geq 0)$ $P_g \stackrel{\text{def}}{=} P^2 \# \dots \# P^2 \text{ sup. non orient. di genere } g \ (\geq 1)$



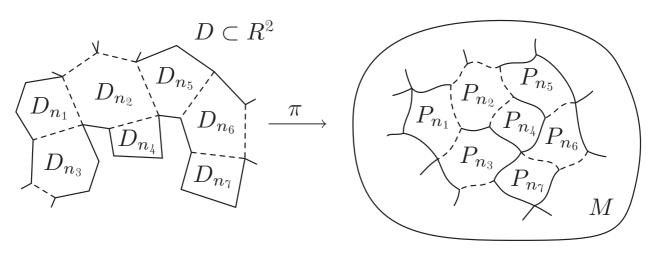
<u>Lemma</u>. M superficie topologica \Rightarrow

 $\exists \mathcal{P} = \{P_n\}_{n \geq 1}$ ric. num. loc. finito di M (<u>poligonazione</u>) t.c. 1) P_n "poligono" $\forall n \ (\exists h_n : D_n \to P_n \text{ omeo con}$ $D_n \subset \mathbb{R}^2 \text{ poligono convesso})$

2) $P_{n_1} \cap P_{n_2} = \emptyset$ o "vertice" o "lato" $\forall n_1 \neq n_2$

<u>Lemma</u>. M superficie topologica connessa compatta $\Leftrightarrow M\cong D/\!\!\sim \text{ con }D\subset R^2 \text{ poligono convesso }e\sim \text{relazione}$ d'equiv. che identif. i lati di D a coppie

 $\underline{\mathrm{Dim}}. \ \mathcal{P} = \{P_1, \dots, P_k\} \ \text{poligonazione finita di } M$ ogni "segmento" di \mathcal{P} è "lato" di due "poligoni" $\rightsquigarrow \mathcal{P} = \{P_{n_1}, \dots, P_{n_k}\} \ \text{rinumerazione t.c.}$ $P_{n_i} \cap (P_{n_1} \cup \dots \cup P_{n_{i-1}}) \supset S_i = \text{"lato"} \iff L_i \subset D_{n_i}$ $\rightsquigarrow D \cong D_{n_1} \sqcup_{L_2} D_{n_2} \sqcup_{L_3} D_{n_3} \sqcup_{L_4} \dots \sqcup_{L_k} D_{n_k}$

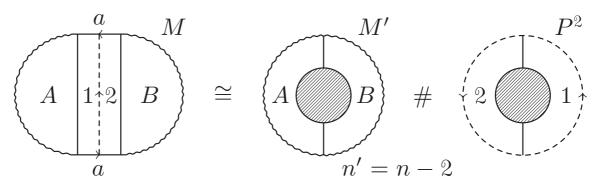


<u>Prop.</u> M superficie topologica connessa compatta $\Leftrightarrow M \cong T_g \text{ con } g \geq 0 \text{ o } M \cong P_g \text{ con } g \geq 1$

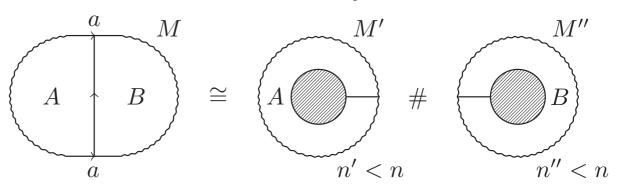
 $\underline{\text{Dim}}.\ M\cong D/\sim + \text{ induz. su } n=\# \text{ "lati" di } D\Rightarrow M\cong T_g\# P_{g'}$ $n=2) \qquad a \qquad \qquad a$

$$n=2$$
) a
 $\cong S^2 (\cong T_0)$ a
 $\cong P^2 (\cong P_1)$

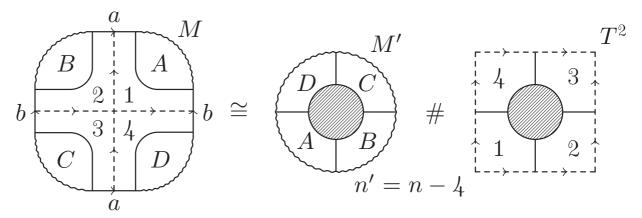
 $n \geq 4$) I caso: \exists lati che si identificano con orient. concordi



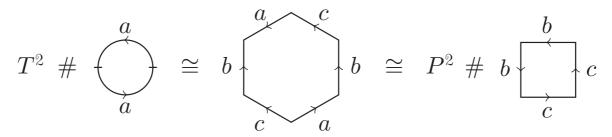
II caso: lati in A non si identificano con lati in B



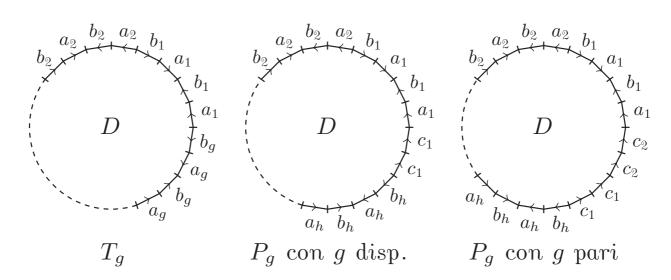
III caso:



Resta da provare che: $T^2 \# P^2 \cong P^2 \# P^2 \# P^2$



Nota: dim. \rightarrow rappresentazione canonica delle superfici $P_g \cong \begin{cases} T_h \# P^2 \text{ con } h = (g-1)/2 \text{ se } g \text{ dispari} \\ T_h \# P^2 \# P^2 \text{ con } h = (g-2)/2 \text{ se } g \text{ pari} \end{cases}$



<u>Dim</u>. applicazione del teorema di Seifert-Van Kampen con: $X_1 = (\operatorname{Int} D)/\sim \cong \operatorname{Int} D$ semplicemente connesso $X_2 = (D - \{p\})/\sim \cong (\operatorname{Fr} D)/\sim \cong \vee_n S^1$ e $X_1 \cap X_2 \simeq S^1$

<u>Prop.</u> Le superfici T_g con $g \ge 0$ e P_g con $g \ge 1$ sono a due a due non omeomorfe

 $\underline{\text{Dim}}$. gli H_1 sono a due a due non isomorfi

Nota: in questo caso passando da π_1 ad H_1 si conservano abbastanza informazioni per distinguere le superfici

M superficie topologica compatta, $\mathcal P$ poligonazione di M $\chi(M) \stackrel{\text{def}}{=\!=\!=\!=} \# \{\text{poligoni di } \mathcal P\} - \# \{\text{lati di } \mathcal P\} + \# \{\text{vertici di } \mathcal P\} \}$ caratteristica di Eulero-Poincaré di M

- Note: 1) $\chi(M)$ è ben definita, cioè non dipende da \mathcal{P} (\mathcal{P}' suddivisione di $\mathcal{P} \Rightarrow \chi_{\mathcal{P}'}(M) = \chi_{\mathcal{P}}(M)$, $\forall \mathcal{P} \exists \mathcal{P}'$ suddivisione comune a \mathcal{P}'' t.c. $\mathcal{P}'' \rightsquigarrow$ rappresentazione canonica)
 - 2) $\chi(S^2) = 2$, $\chi(P^2) = 1$, $\chi(T^2) = 0$
 - 3) $\chi(M_1 \# M_2) = \chi(M_1) + \chi(M_2) 2$ $\downarrow \chi(T_q) = 2 - 2g \quad \forall g \ge 0 \quad \text{e} \quad \chi(P_q) = 2 - g \quad \forall g \ge 1$
 - 4) $\chi(M)$ è invariante per omeo, quindi distingue tra loro le superfici orientabili e le superfici non orientabili $(M \text{ orientabile} \Rightarrow \exists M \hookrightarrow R^3 \Rightarrow \not\exists \text{ Mb} \hookrightarrow M$ $M \text{ non orientabile} \Rightarrow M \cong M' \# P^2 \Rightarrow \exists \text{ Mb} \hookrightarrow M)$

Conclusione: M, M' superfici topologiche connesse compatte $M \cong M' \Leftrightarrow \pi_1(M) \cong \pi_1(M') \Leftrightarrow H_1(M) \cong H_1(M') \Leftrightarrow \chi(M) = \chi(M') \text{ e } M, M' \text{ orien./non orien.}$