Spazi vettoriali numerici e matrici

$$\mathbb{K}^{n} = \{(x_{1}, \dots, x_{n}) \mid x_{i} \in \mathbb{K}\} \leadsto (x_{1}, \dots, x_{n}) = \sum_{i=1}^{n} x_{i}e_{i}$$

$$\mathbb{K}^{m} = \{(y_{1}, \dots, y_{m}) \mid y_{j} \in \mathbb{K}\} \leadsto (y_{1}, \dots, y_{n}) = \sum_{j=1}^{m} y_{j}e_{j}$$

$$\varphi : \mathbb{K}^{n} \to \mathbb{K}^{m} \text{ appl. lineare} \leadsto (y_{1}, \dots, y_{n}) = \varphi(x_{1}, \dots, x_{n})$$

$$\begin{cases} y_{1} = a_{1,1}x_{1} + \dots + a_{1,n}x_{n} \\ \vdots & \vdots \\ y_{m} = a_{m,1}x_{1} + \dots + a_{m,n}x_{n} \end{cases}$$

$$\begin{cases} y_{1} \\ \vdots \\ y_{m} \end{cases} = \begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & \vdots \\ a_{m,1} & \dots & a_{m,n} \end{pmatrix} \cdot \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} \quad y = A \cdot x = Ax$$

$$\uparrow A = (a_{i,j})_{i=1,\dots,m}^{j=1,\dots,n} \text{ matrice } m \times n \text{ su } \mathbb{K}$$

 $\underline{\text{Note}}$: 1) x e y $\underline{\text{vettori colonna}}$ (= matrici con una sola colonna)

2) $A = (A_1 \dots A_n)$ con $A_i = \varphi(e_i)$ (i-esima colonna di A) (matrice $m \times n \leftrightarrow m$ colonne in $\mathbb{K}^n \leftrightarrow n$ righe in \mathbb{K}^m)

 $M_{m,n}\mathbb{K} \stackrel{\text{def}}{=\!\!\!=\!\!\!=\!\!\!=} \{A = (a_{i,j})_{i=1,\dots,m}^{j=1,\dots,n} \text{ matrice } m \times n \text{ su } \mathbb{K}\} \cong \mathbb{K}^{mn}$ $\stackrel{\subset}{\subset}$ spazio vettoriale delle matrici $m \times n$ su \mathbb{K} con operazioni definite per componenti

Nota:
$$\varphi \mapsto M(\varphi) = A \rightsquigarrow \operatorname{Hom}(\mathbb{K}^n, \mathbb{K}^m) \cong M_{m,n} \mathbb{K}$$

 $\operatorname{End} \mathbb{K}^n \cong M_{n,n} \mathbb{K}$

 $M_{l,m}\mathbb{K} \times M_{m,n}\mathbb{K} \to M_{l,n}\mathbb{K}$ prodotto righe per colonne definito $(A,B) \mapsto C = A \cdot B$ con $C = (c_{i,k} = \sum_{j=1}^m a_{i,j}b_{j,k})_{i=1,\dots,l}^{k=1,\dots,n}$ $\varphi \in \text{Hom}(\mathbb{K}^l, \mathbb{K}^m), \ \psi \in \text{Hom}(\mathbb{K}^m, \mathbb{K}^n) \Rightarrow M(\psi \circ \varphi) = M(\psi) \cdot M(\varphi)$

Note: 1) $A \cdot (B \cdot C) = (A \cdot B) \cdot C$ per ogni A, B, C componibili

2) in generale $A \cdot B \neq B \cdot A$ (anche se entrambe definite)

3)
$$(A+B) \cdot C = A \cdot C + B \cdot C$$
, $(cA) \cdot B = c(A \cdot B)$
 $A \cdot (B+C) = A \cdot B + A \cdot C$, $A \cdot (cB) = c(A \cdot B)$

 $I_n = M(\mathrm{id}_{\mathbb{K}^n}) = (\delta_{i,j})_{i=1,\dots,n}^{j=1,\dots,n} \in M_{n,n}\mathbb{K}$ matrice identità tale che $I_m \cdot A = A = A \cdot I_n$ per ogni $A \in M_{m,n}\mathbb{K}$

 $A \in M_{n,n}\mathbb{K}$ matrice invertibile $\stackrel{\text{def}}{\Longleftrightarrow}$ esiste (unica) $A^{-1} \in M_{n,n}\mathbb{K}$ tale che $A \cdot A^{-1} = I_n = A^{-1} \cdot A$

 $\operatorname{GL}(n,\mathbb{K}) \stackrel{\text{def}}{=\!\!\!=\!\!\!=} (\{A \in M_{n,n} \mid A \text{ invert.}\}, \cdot) \text{ gruppo lineare generale}$

Note: 1) $\varphi \mapsto M(\varphi) \rightsquigarrow \operatorname{Aut} \mathbb{K}^n \cong \operatorname{GL}(n,\mathbb{K})$ isomorfismo di gruppi

- 2) $\varphi : \mathbb{K}^n \to \mathbb{K}^m$, $\varphi(v_i) = w_i \text{ con } \{v_1, \dots, v_n\} \text{ base di } \mathbb{K}^n$ $\Rightarrow M(\varphi) = (w_1 \dots w_n) \cdot (v_1 \dots v_n)^{-1} \in M_{m,n} \mathbb{K}$
- 3) $B = (v_1, \dots, v_n)$ e $B' = (v'_1, \dots, v'_n)$ basi ord. di \mathbb{K}^n $\Rightarrow M_{B,B'} \stackrel{\text{def}}{==} M(\gamma_{B,B'}) = (v_1 \dots v_n) \cdot (v'_1 \dots v'_n)^{-1}$

 $A = (a_{i,j})_{i=1,...,m}^{j=1,...,n} \in M_{m,n} \mathbb{K}$ $\sim A^* = (a_{i,j}^* = a_{j,i})_{i=1,...,n}^{j=1,...,m} \in M_{n,m} \mathbb{K} \quad \underline{\text{matrice trasposta}} \text{ di } A$ $A \in M_{n,n} \mathbb{K} \quad \underline{\text{matrice simmetrica}} \iff A^* = A$

 $\frac{\text{matrice antisimmetrica}}{\text{matrice antisimmetrica}} \stackrel{\text{def}}{\Longleftrightarrow} A^* = -A$

<u>Note</u>: 1) $A \mapsto A^*$ isomorfismo $M_{m,n}\mathbb{K} \to M_{n,m}\mathbb{K}$ $(A^{**} = A)$

- 2) $(A \cdot B)^* = B^* \cdot A^*$ per ogni A, B componibili
- 3) $A \in M_{n,n}\mathbb{K}$ invertibile $\Leftrightarrow A^*$ invertibile, $(A^*)^{-1} = (A^{-1})^*$
- 4) $M_{n,n}^{\text{sim}}\mathbb{K}, M_{n,n}^{\text{antisim}}\mathbb{K} \subset M_{n,n}\mathbb{K}$ sottospazi vettoriali
- 5) $M_{n,n}\mathbb{K} = M_{n,n}^{\text{sim}}\mathbb{K} \oplus M_{n,n}^{\text{antisim}}\mathbb{K} \text{ se car } \mathbb{K} \neq 2$

<u>Prop.</u> $A \in M_{m,n}\mathbb{K}, A = M(\varphi) \Rightarrow A^* = M(\varphi^*)$

 $\underline{\text{Dim}}. \ \varphi^*(e_j^*)_i = \varphi^*(e_j^*)(e_i) = e_j^*(\varphi(e_i)) = \varphi(e_i)_j = a_{j,i} = a_{i,j}^*$

 $A \in M_{m,n}\mathbb{K} \leadsto \underline{\mathrm{rango}} \ \mathrm{di} \ A$

 $\operatorname{rg} A \stackrel{\operatorname{def}}{=\!\!\!=\!\!\!=} \max$ numero righe di A lin. indipendenti in \mathbb{K}^n

- = max numero colonne di A lin. indipendenti in \mathbb{K}^m
- = max ordine di $B \subset A$ sottomatrice quadrata invertibile

Note: 1) $A \in M_{n,n}\mathbb{K}$ invertibile $\Leftrightarrow \operatorname{rg} A = n$

2) $\operatorname{rg}(A \cdot B) \leq \min\{\operatorname{rg} A, \operatorname{rg} B\}$ per ogni A, B componibili $\operatorname{rg}(A \cdot B) = \operatorname{rg} A$ se B invertibile, $= \operatorname{rg} B$ se A invertibile

3) rg $A = k \Leftrightarrow \exists B \subset A$ quadrata invertibile di ordine k e $\nexists C \subset A$ quadrata invertibile di ordine k+1 ($\leadsto \underline{\text{metodo degli orlati}}$ per il calcolo di rg A)

Operazioni elementari sulle righe di $A \in M_{m,n}\mathbb{K}$

$$A = \begin{pmatrix} A^{1} \\ \vdots \\ A^{i} \\ \vdots \\ A^{m} \end{pmatrix} \rightsquigarrow E(i, c) \cdot A = \begin{pmatrix} A^{1} \\ \vdots \\ c A^{i} \\ \vdots \\ A^{m} \end{pmatrix} \text{ con } E(i, c) = \begin{pmatrix} e_{1} \\ \vdots \\ c e_{i} \\ \vdots \\ e_{m} \end{pmatrix}$$

$$A = \begin{pmatrix} A^{1} \\ \vdots \\ A^{i} \\ \vdots \\ A^{m} \end{pmatrix} \rightsquigarrow F(i, j) \cdot A = \begin{pmatrix} A^{1} \\ \vdots \\ A^{i} + A^{j} \\ \vdots \\ A^{m} \end{pmatrix} \text{ con } F(i, j) = \begin{pmatrix} e_{1} \\ \vdots \\ e_{i} + e_{j} \\ \vdots \\ e_{m} \end{pmatrix}$$

Note: 1) rg A non cambia se $c \neq 0$ e $i \neq j$

- 2) operazioni derivate: $A^{i} \leadsto A^{i} + c A^{j}$ e $A^{i} \leftrightarrow A^{j}$ $(A \leadsto E(j, c^{-1}) \cdot F(i, j) \cdot E(j, c) \cdot A \text{ con } c \neq 0$ $A \leadsto F(i, j) \cdot E(i, -1) \cdot F(j, i) \cdot E(j, -1) \cdot F(i, j) \cdot E(j, -1) \cdot A)$
- 3) operazioni elementari sulle colonne definite moltiplicando a destra per le matrici $E(i,c)^* = E(i,c), F(i,j)^* = F(j,i)$

Metodo di eliminazione di Gauss

 $A \in M_{m,n}\mathbb{K}$ matrice non nulla

$$\rightsquigarrow p_1 = a_{i_1,j_1} \neq 0 \text{ con } a_{i,j} = 0 \ \forall i \geq 1 \ \forall j < j_1$$
 operazioni elementari $\rightsquigarrow i_1 = 1, \ a_{i,j_1} = 0 \ \forall i > 1$

$$\rightarrow p_2 = a_{2,j_2} \neq 0, \dots, p_k = a_{k,j_k} \neq 0$$
, finché $a_{i,j} = 0 \ \forall i > k$ (iterando il primo passo sulle sottomatrici $(a_{h,l})_{h=i+1,\dots,m}^{l=j_i+1,\dots,n}$)

 $\rightarrow A$ matrice a gradini superiore

$$\stackrel{\text{def}}{\iff} \exists p_1 = a_{1,j_1} \neq 0, \dots, p_k = a_{k,j_k} \neq 0 \text{ (pivot di } A)$$

t.c. $j_1 < \dots < j_k \text{ e } a_{i,j} = 0 \text{ se } j < j_i \text{ o } i > k$

 $\underline{\text{Prop}}$. $A \in M_{m,n}\mathbb{K} \Rightarrow \text{rg } A = \text{numero dei pivot di } A$

 $\underline{\text{Dim}}$. A matrice a gradini $\Rightarrow A^1, \dots, A^k$ righe lin. indipendenti

 $A \in M_{n,n}\mathbb{K}$ matrice a gradini invertibile

$$\Rightarrow p_1 = a_{1,1} \neq 0, \dots, p_n = a_{n,n} \neq 0$$

 $a_{i,j} = 0 \text{ se } i > j \text{ (matrice triangolare superiore)}$

$$\rightarrow a_{i,j} = 0$$
 se $i \neq j$ (matrice diagonale) $\rightarrow A = I_n$ (elim. inversa)

Nota: metodo di elimin. di Gauss \sim invertibilità di $A \in M_{n,n}\mathbb{K}$ (A invertibile \Leftrightarrow prodotto di matrici elementari invertibili) eliminazione diretta e inversa $\sim A^{-1}$ ($(A|I_n) \sim (I_n|A^{-1})$)

Determinanti

 $A \in M_{n,n} \mathbb{K}$ (matrice quadrata di ordine n)

$$\rightarrow \det A \stackrel{\text{def}}{=} \sum_{\sigma \in \Sigma_n} \operatorname{sgn}(\sigma) \ a_{1,\sigma(1)} \cdots a_{n,\sigma(n)} \in \mathbb{K}$$

$$\underline{\det \operatorname{eterminante}} \ \operatorname{di} \ A$$

Esempi: 1)
$$n = 1 \rightsquigarrow A = (a_{1,1}), \det A = a_{1,1}$$

- 2) $n = 2 \rightsquigarrow \det A = a_{1,1}a_{2,2} a_{1,2}a_{2,1}$
- 3) $n = 3 \sim \text{regola di Sarrus}$

Note: 1) det
$$A^* = \det A$$
 $(a_{1,\sigma(1)} \cdots a_{n,\sigma(n)} = a_{\sigma^{-1}(1),1} \cdots a_{\sigma^{-1}(n),n})$

- 2) $\det A$ è multilineare rispetto alle righe e alle colonne (mentre non c'è relazione tra $\det(A+B)$ e $\det A$, $\det B$)
- 3) $\det A$ è alternante (antisimm.) rispetto a righe e colonne (cambia segno scambiando tra loro due righe o colonne)
- 4) $\det A = 0$ se una riga o colonna è combin. lin. delle altre (caso speciale: $A^i = A^j \Rightarrow \det A = \sum_{\sigma(i) < \sigma(j)} + \sum_{\sigma(i) > \sigma(j)} = 0$)
- 5) A triangolare sup. $\Rightarrow \det A = a_{1,1} \cdots a_{n,n} \ (\det I_n = 1)$
- 6) $C = \left(\frac{A \mid *}{0 \mid B}\right) \text{ matrice a blocchi} \Rightarrow \det C = \det A \det B$

Lemma. 1)
$$\det(E(i,c) \cdot A) = \det E(i,c) \det A = c \det A$$

2)
$$\det(F(i,j) \cdot A) = \det F(i,j) \det A = \det A$$

<u>Dim</u>. segue dalle note 2 e 3

Prop.
$$A \in M_{n,n}\mathbb{K}$$
 invertibile $\Leftrightarrow \det A \neq 0$
e in tal caso $\det(A^{-1}) = (\det A)^{-1}$

<u>Dim</u>. A non invertible $\Rightarrow \operatorname{rg} A < n \Rightarrow \det A = 0 \pmod{4}$ A invertible $\Rightarrow \operatorname{lemma} \operatorname{applicato} \operatorname{a} (A|I_n) \rightsquigarrow (I_n|A^{-1})$

<u>Prop.</u> (<u>Teorema di Binet</u>) $A, B \in M_{n,n} \mathbb{K} \Rightarrow \det(A \cdot B) = \det A \det B$

<u>Dim.</u> A non invertibile $\Rightarrow A \cdot B$ non invert. $\rightsquigarrow 0 = 0$ (prop. prec.) A invertibile \Rightarrow lemma applicato a $(A^{-1}|B) \rightsquigarrow (I_n|A \cdot B)$

Prop. (Teorema di Laplace)

$$A \in M_{n,n}\mathbb{K} \Rightarrow \det A = \sum_{j=1}^n a_{i,j} A_{i,j}$$
 (sviluppo risp. riga i)
$$\det A = \sum_{i=1}^n a_{i,j} A_{i,j}$$
 (sviluppo risp. colonna j)
$$\cot A_{i,j} = (-1)^{i+j} \det(A \text{ senza la riga } i \text{ e la colonna } j)$$

$$\underbrace{\cot A_{i,j} = (-1)^{i+j} \det(A \text{ senza la riga } i \text{ e la colonna } j)}_{\text{complemento algebrico}} \det a_{i,j}$$

 $\begin{array}{l} \underline{\mathrm{Dim}}. \text{ basta considerare gli sviluppi per righe } (\det A = \det A^*) \\ \det A &= \sum_{j=1}^n \sum_{\sigma(i)=j} a_{i,j} \operatorname{sgn}(\sigma) \prod_{k \neq i} a_{k,\sigma(k)} \\ &= \sum_{j=1}^n a_{i,j} \sum_{\tau \in \Sigma_{n-1}} (-1)^{i-j} \operatorname{sgn}(\tau) \prod_{k \neq i} a_{k,\tau(k)} \end{array}$

Corol.
$$A^{-1} = (\bar{a}_{i,j} = A_{j,i}/\det A)_{i=1,\dots,n}^{j=1,\dots,n}$$

$$\underline{\text{Dim}}. \ \sum_{j=1}^{n} a_{i,j} \bar{a}_{j,k} = \sum_{j=1}^{n} a_{i,j} A_{k,j} / \det A = \delta_{i,k}$$

Sistemi lineari

$$A \in M_{m,n}\mathbb{K}, \ B \in M_{m,1}\mathbb{K}$$

 $\rightarrow A \cdot x = B$ <u>sistema lineare</u> con m equazioni in n incognite $(x = (x_1, \dots, x_n)^*$ vettore colonna delle incognite)

Note: 1) $A \cdot x = 0$ sistema lineare omogeneo ammette sempre la soluzione nulla x = 0

- 2) $\{\text{sol. } A \cdot x = 0\} = \text{Ker}(\varphi : x \mapsto A \cdot x) \subset \mathbb{K}^n \text{ sottosp. vett.}$ $\text{rg } A = k \Rightarrow \dim\{\text{sol. } A \cdot x = 0\} = n - k$ quindi la soluzione nulla x = 0 è l'unica $\Leftrightarrow \text{rg } A = n$
- 3) $A \cdot x = B$ ammette soluzioni $\Leftrightarrow B \in \text{Im}(\varphi : x \mapsto A \cdot x)$ in tal caso: {sol. $A \cdot x = B$ } \leftrightarrow {sol. $A \cdot x = 0$ } $(\varphi^{-1}(B) = \ker \varphi + x_0 \text{ (laterale) con } x_0 \text{ t.c. } \varphi(x_0) = B)$

Teorema di Rouché-Capelli

 $A \cdot x = B$ sistema lineare con m equazioni e n incognite ammette soluzioni $\Leftrightarrow \operatorname{rg} A = \operatorname{rg}(A, B) \ (= n - \dim\{\operatorname{soluzioni}\})$

 $\underline{\operatorname{Dim}}. \operatorname{rg} A = \operatorname{rg}(A, B) \Leftrightarrow B \in \langle A_1, \dots, A_n \rangle \Leftrightarrow B \in \operatorname{Im}(\varphi : x \mapsto A \cdot x)$

Risoluzione di $A \cdot x = B$ (I metodo)

- 1) riduzione a gradini (eliminazione di Gauss su (A, B))
- 2) se si ottiene un'equazione $0 x_1 + \ldots + 0 x_n = b$ con $b \neq 0$ allora il sistema $A \cdot x = B$ non ammette soluzioni
- 3) altrimenti si riduce $A \cdot x = B$ alle equazioni dei pivot (prime k)
- 4) $A \cdot x = B \rightsquigarrow C \cdot x' = B D \cdot x''$ con:

C triang. sup. invertibile di ordine k $x' = (x_{j_1}, \ldots, x_{j_k})$ incognite dei pivot x'' =altre incognite = n - k variabili "libere"

5) $x' = E + F \cdot x''$ (eliminazione inversa di Gauss su (C, B, -D))

Risoluzione di $A \cdot x = B$ (II metodo)

- 1) $C \subset A$ quad. invert. di ordine $k = \operatorname{rg} A$ (metodo orlati con det.)
- 2) verifica che rg(A, B) = k (metodo degli orlati con determinanti)
- 3) riduzione di $A \cdot x = B$ alle equazioni contenenti le righe di C
- 3) $A \cdot x = B \rightsquigarrow C \cdot x' = B D \cdot x''$ con:

 $x' = (x_{j_1}, \dots, x_{j_k})$ incognite delle colonne di Cx'' =altre incognite = n - k variabili "libere"

5) $x' = C^{-1} \cdot (B - D \cdot x'')$ (C^{-1} calcolata con i determinanti)

Nota: $A \cdot x = B$, A invert. $\rightsquigarrow x_i = \sum_{j=1}^n \frac{b_j A_{j,i}}{\det A}$ (<u>regola di Cramer</u>)

Forme bilineari simmetriche

V spazio vettoriale su \mathbb{K} , dim $V=n<\infty$

B base ord. di $V \rightsquigarrow \operatorname{Bil} V \cong M_{n,n}\mathbb{K}$ isomorfismo definito

$$\beta \leftrightarrow M(\beta_B) \text{ con } \beta_B(x,y) = x^* \cdot M(\beta_B) \cdot y$$

 $(B = (v_1, \dots, v_n) \rightsquigarrow M(\beta_B)_{i,j} = \beta(v_i, v_i))$

B' altra base ord. di $V \rightsquigarrow M(\beta_{B'}) = (M_{B,B'}^{-1})^* \cdot M(\beta_B) \cdot M_{B,B'}^{-1}$

- Note: 1) $\beta \in \text{Bil } V \text{ (anti)simm.} \Leftrightarrow \exists B \text{ t.c. } M(\beta_B) \text{ mat. (anti)simm.} \Leftrightarrow M(\beta_B) \text{ matrice (anti)simm. per ogni base ord. } B$
 - 2) $A, A' \in M_{n,n}\mathbb{K}$ matrici congruenti $\stackrel{\text{def}}{\iff} \exists M \in GL(n,\mathbb{K})$ tale che $A' = M^* \cdot A \cdot M$ $\iff A, A'$ rappr. stessa forma bilin. risp. a basi diverse

 $\beta \in \operatorname{Bil} V$ diagonalizzabile

$$\stackrel{\text{def}}{\Longrightarrow} \exists B = \{v_1, \dots, v_n\} \text{ base di } V \text{ t.c. } \beta(v_i, v_j) = 0 \ \forall i \neq j$$
 $\iff \exists B = (v_1, \dots, v_n) \text{ t.c. } M(\beta_B) = \text{Diag}(k_1, \dots, k_n)$
(matrice diagonale con $k_i = \beta(v_i, v_i) \ \forall i = 1, \dots, n$)

Nota: $\beta \in \text{Bil } V \text{ diagonalizzabile } \Rightarrow \beta \text{ simmetrica}$

<u>Prop.</u> V spazio vettoriale su \mathbb{K} , dim $V=n<\infty$, car $\mathbb{K}\neq 2$ $\beta\in \mathrm{Bil}\,V$ simmetrica $\Rightarrow\beta$ diagonalizzabile

 $\underline{\text{Dim}}$ per induzione su $n \geq 1$ (n = 1 banale)

- Note: 1) metodo di eliminazione simultanea (righe e colonne): matrice simmetrica \rightsquigarrow matrice congruente diagonale $(A \rightsquigarrow E(i,c) \cdot A \cdot E(i,c)^*$ e $A \rightsquigarrow F(i,j) \cdot A \cdot F(i,j)^*)$
 - 2) elim. simult. $\left(\frac{A}{I_n}\right) \leadsto \left(\frac{A'}{B}\right)$ con B base diagonalizzante

Teorema di Sylvester

V spazio vett. reale, dim $V=n<\infty\,,\;\beta\in\operatorname{Bil}V$ simm.

 $\Rightarrow \exists \{v_1, \dots, v_n\} \text{ base di } V \text{ t.c. } \beta(v_i, v_j) = 0 \text{ per ogni } i \neq j,$ $\beta(v_i, v_i) = 1 \text{ se } i \leq p, \ \beta(v_i, v_i) = -1 \text{ se } p < i \leq \operatorname{rg} \beta,$ $\operatorname{con} \operatorname{rg}(\beta) \text{ e } \operatorname{pos}(\beta) \stackrel{\text{def}}{=\!\!\!=} p \text{ univoc. determinati da } \beta$

```
\begin{array}{l} \underline{\mathrm{Dim}}.\ \{w_1,\ldots,w_n\}\ \mathrm{base}\ \mathrm{d}i\ V\ \mathrm{t.c.}\ \beta(w_i,w_j)=0\ \mathrm{per}\ \mathrm{ogni}\ i\neq j\\ \\ \sim \{v_1,\ldots,v_n\}\ \mathrm{con}\ v_i=w_i/\sqrt{|\beta(w_i,w_i)|}\ \mathrm{se}\ \beta(w_i,w_i)\neq 0\\ \\ \mathrm{e}\ v_i=w_i\ \mathrm{altrimenti},\ \mathrm{base}\ \mathrm{opportunamente}\ \mathrm{rinumerata}\\ \\ \sim V_+=\left\langle v_1,\ldots,v_p\right\rangle, V_-=\left\langle v_{p+1},\ldots,v_{\mathrm{rg}\,\beta}\right\rangle, V_0=\left\langle v_{\mathrm{rg}\,\beta+1},\ldots,v_n\right\rangle\\ \\ \mathrm{t.c.}\ V=V_+\oplus V_-\oplus V_0,\ \mathrm{dim}\ V_+=p,\ \mathrm{dim}(V_-\oplus V_0)=n-p\\ \\ \beta(v,v)>0\ \forall\,v\in V_+-\{0\}\,,\ \beta(v,v)\leq 0\ \forall\,v\in V_-\oplus V_0\\ \\ p'=\mathrm{dim}\ V'_+\ \mathrm{con}\ V=V'_+\oplus V'_-\oplus V'_0\ \mathrm{derivata}\ \mathrm{da}\ \{v'_1,\ldots,v'_n\}\\ \\ \Rightarrow p'=p\ (p'>p\Rightarrow V'_+\cap (V_-\oplus V_0)\neq \{0\}\ \sim\ \mathrm{assurdo}) \end{array}
```

Prop. V spazio vett. complesso, dim $V = n < \infty$, $\beta \in \text{Bil } V \text{ simm.}$ $\Rightarrow \exists \{v_1, \dots, v_n\} \text{ base di } V \text{ t.c. } \beta(v_i, v_j) = 0 \text{ per ogni } i \neq j,$ $\beta(v_i, v_i) = 1 \text{ per ogni } i = 1, \dots, \text{rg } \beta$

 $\underline{\text{Dim}}. \{w_1, \dots, w_n\} \text{ base di } V \text{ t.c. } \beta(w_i, w_j) = 0 \text{ per ogni } i \neq j$ $\sim \{v_1, \dots, v_n\} \text{ con } v_i = w_i / \sqrt{\beta(w_i, w_i)} \text{ se } \beta(w_i, w_i) \neq 0$

Corol. $A, A' \in M_{n,n}^{\text{sym}} \mathbb{R}$ congruenti $\Leftrightarrow \operatorname{rg} A = \operatorname{rg} A'$ e $\operatorname{pos} A = \operatorname{pos} A'$ $A, A' \in M_{n,n}^{\text{sym}} \mathbb{C}$ congruenti $\Leftrightarrow \operatorname{rg} A = \operatorname{rg} A'$

Operatori lineari e determinanti

V spazio vettoriale su \mathbb{K} , dim $V=n<\infty$

B base ord. di $V \rightsquigarrow \operatorname{End} V \cong M_{n,n}\mathbb{K}$ isom. definito $\varphi \leftrightarrow M(\varphi_B)$

B' altra base ord. di $V \rightsquigarrow M(\varphi_{B'}) = M_{B,B'} \cdot M(\varphi_B) \cdot M_{B,B'}^{-1}$

Nota: $A, A' \in M_{n,n}\mathbb{K}$ matrici equivalenti $\stackrel{\text{def}}{\iff} \exists M \in \text{GL}(n,\mathbb{K})$ tale che $A' = M \cdot A \cdot M^{-1}$ $\iff A, A'$ rappr. stesso operatore lin. risp. a basi diverse $\varphi \in \text{End } V \rightsquigarrow \det \varphi \stackrel{\text{def}}{\implies} \det M(\varphi_B) \ (= \det M(\varphi_{B'}))$ $\stackrel{\leftarrow}{\sqsubseteq}$ determinante dell'operatore lineare φ

 $\underline{\mathrm{Nota}} \colon 1) \ \det(\psi \circ \varphi) = \det(\varphi) \det(\psi) \ \mathrm{per} \ \mathrm{ogni} \ \varphi, \psi \in \mathrm{End} \, V$

- 2) $\varphi \in \operatorname{Aut} V \Leftrightarrow \det \varphi \neq 0$ e in tal caso $\det \varphi^{-1} = (\det \varphi)^{-1}$
- 3) $\det : \operatorname{Aut} V \to (\mathbb{K} \{0\}, \cdot)$ omomorfismo di gruppi $\to \operatorname{SL}(n, \mathbb{K}) \stackrel{\operatorname{def}}{=} \{M \in M_{n,n} \mathbb{K} \mid \det M = 1\} \subset \operatorname{GL}(n, \mathbb{K})$ gruppo lineare speciale (= ker det \Rightarrow sottogr. norm.)

Orientazioni di spazi vettoriali reali

V spazio vettoriale su \mathbb{R} , dim $V=n<\infty$

B, B' basi ordinate di V equiorientate $\stackrel{\text{def}}{\Longleftrightarrow}$ det $\gamma_{B,B'} > 0$

 \sim due <u>orientazioni</u> su $V \stackrel{\text{def}}{=\!=\!=}$ classi di basi equiorientate

 $\varphi \in \operatorname{Aut} V$ conserva le orientazioni $\stackrel{\operatorname{def}}{\Longleftrightarrow}$ det $\varphi > 0$

 $\Leftrightarrow \varphi(B)$ e Bsono equiorient. per ogni base ord. B di V

 $\operatorname{Aut}^+ V \stackrel{\operatorname{def}}{=\!\!\!=\!\!\!=} \{ \varphi \in \operatorname{Aut} V \mid \varphi \text{ cons. le orient.} \} \subset \operatorname{Aut} V \text{ sottogr. norm.}$

in particulare: $GL^+(n,\mathbb{R}) = \{M \in M_{n,n}\mathbb{R} \mid \det M > 0\} \subset GL(n,\mathbb{R})$

Note: 1) (v_1, \ldots, v_n) base ord. positiva di $\mathbb{R}^n \Leftrightarrow \det(v_1, \ldots, v_n) > 0$

- 2) $\mathbb{R}^n \subset \mathbb{C}^n \leftrightarrow \mathbb{R}^{2n} \leadsto \mathrm{GL}(n,\mathbb{R}) \subset \mathrm{GL}(n,\mathbb{C}) \subset \mathrm{GL}^+(2n,\mathbb{R})$
- 3) $V = \text{spazio dei vettori liberi del piano}, \ \varphi \in \text{End } V$ $\Rightarrow \det \varphi = \pm \text{Area}(\varphi(v_1), \varphi(v_2)) / \text{Area}(v_1, v_2)$ per ogni $v_1, v_2 \in V$ linearmente indipendenti
- 4) $V = \text{spazio dei vettori liberi dello spazio}, \ \varphi \in \text{End } V$ $\Rightarrow \det \varphi = \pm \text{Volume}(\varphi(v_1), \varphi(v_2), \varphi(v_3)) / \text{Volume}(v_1, v_2, v_3)$ per ogni $v_1, v_2, v_3 \in V$ linearmente indipendenti

Autovalori e autovettori

 $\varphi \in \operatorname{End} V$, V spazio vettoriale su \mathbb{K}

 $U \subset V$ sottospazio <u>invariante</u> per $\varphi \stackrel{\text{def}}{\Longleftrightarrow} \varphi(U) \subset U$

 $v \in V$ <u>autovettore</u> per $\varphi \stackrel{\text{def}}{\Longleftrightarrow} v \neq 0$ e $\varphi(v) = kv$ con $k \in \mathbb{K}$ <u>autovalore</u> per φ associato a $v \stackrel{\bigcirc}{\searrow}$

 $k \in \mathbb{K}$ autovalore per $\varphi \leadsto V_k = \{v \in V \mid \varphi(v) = k \, v\} \subset V$ $\nwarrow k\text{-}\underbrace{\text{autospazio}}_{k\text{-}\underbrace{\text{autospazio}}_{k\text{-}\underbrace{\text{per }\varphi}}} \text{per }\varphi$

Note: 1) gli V_k sono sottospazi indipendenti e invarianti per φ

- 2) $v \in V$ autovett. per $\varphi \Leftrightarrow \langle v \rangle \subset V$ sottosp. invar. per φ
- 3) $\varphi: V \to V$ def. $\varphi(v) = kv$ (<u>dilatazione</u> di fatt. $k \in \mathbb{K}$) $V = V_k$ (unico autosp.) e ogni sottosp. è invariante

 $\varphi \in \operatorname{End} V$, V spazio vettoriale su \mathbb{K} , $\dim V = n < \infty$

 $\leadsto p_\varphi(t) = \det(\varphi - t \operatorname{id}_V) \in \mathbb{K}[t]$ polinomio caratteristico di φ

<u>Nota</u>: $p_{\varphi}(t) = \det(M(\varphi_B) - t I_n)$ con base $B \operatorname{di} V \Rightarrow \operatorname{gr} p_{\varphi}(t) = n$

<u>Prop.</u> $\varphi \in \text{End } V$, V spazio vettoriale su \mathbb{K} , dim $V = n < \infty$ $k \in \mathbb{K}$ autovalore per $\varphi \Leftrightarrow k$ soluzione dell'equaz. $p_{\varphi}(t) = 0$

<u>Dim.</u> k autovalore \Leftrightarrow esiste $v \neq 0$ tale che $\varphi(v) = kv$ $\Leftrightarrow (M(\varphi_B) - kI_n) \cdot x = 0$ ammette soluz. $\neq 0 \Leftrightarrow p_{\varphi}(k) = 0$

k autovalore di $\varphi \in \operatorname{End} V$, dim $V = n < \infty$

 $\sim \mu_{\text{geo}}k \stackrel{\text{def}}{=} \dim V_k \leq n \ (= \max \text{ numero di } k\text{-autovett. lin. indip.})$

<u>Prop.</u> $1 \le \mu_{\text{geo}} k \le \mu_{\text{alg}} k \le n$ per ogni autovalore k di φ

 $\underline{\text{Dim}}. \text{ per induzione su dim } V = n \geq 1 \text{ } (n = 1 \text{ banale})$ $\varphi(v_1) = k \, v_1 \text{ con } v_1 \neq 0 \rightsquigarrow B = (v_1, v_2, \dots, v_n) \text{ base ord. di } V$ $\rightsquigarrow M(\varphi_B) = \left(\frac{k \mid *}{0 \mid A}\right) \Rightarrow p_{\varphi}(t) = -(t - k)p_{\psi}(t), \text{ con } \psi : U \to U$ $\text{definita da } U = \langle v_2, \dots, v_n \rangle \text{ } e \text{ } \psi(v) = \pi_{2,\dots,n}(\varphi(v)) \text{ } \forall v \in U$ $\Rightarrow \mu_{\text{qeo}}^{\varphi} k \leq \mu_{\text{qeo}}^{\psi} k + 1 \leq \mu_{\text{alg}}^{\psi} k + 1 = \mu_{\text{alg}}^{\varphi} k$

Corol. $0 \le \sum_{k} \mu_{geo} k \le \sum_{k} \mu_{alg} k \le n$

 $\varphi \in \operatorname{End} V$ triangolarizzabile

 $\stackrel{\text{def}}{\iff} \exists B = \{v_1, \dots, v_n\} \text{ base di } V \text{ t.c. } \varphi(v_i) = \sum_{j=1}^i a_{j,i} v_j$ $\iff \exists B = (v_1, \dots, v_n) \text{ t.c. } M(\varphi_B) \text{ triangolare superiore}$ $\underline{\text{diagonalizzabile}}$

 $\stackrel{\text{def}}{\Longrightarrow} \exists B = \{v_1, \dots, v_n\} \text{ base di } V \text{ t.c. } \varphi(v_i) = k_i v_i$ $\iff \exists B = (v_1, \dots, v_n) \text{ t.c. } M(\varphi_B) = \text{Diag}(k_1, \dots, k_n)$

- Note: 1) triangolariz. di operatori \neq riduzione a forma triangolare con il metodo di eliminazione di Gauss
 - 2) diagonaliz. di operatori \neq diagonaliz. forme bilineari

<u>Prop.</u> $\varphi \in \operatorname{End} V$, V spazio vettoriale su \mathbb{K} , $\dim V = n < \infty$

- 1) φ triangolarizzabile $\Leftrightarrow \sum_{k} \mu_{\text{alg}} k = n \ (k = \text{autoval. di } \varphi)$ $(\text{cioè } p_{\varphi}(t) = 0 \text{ ha } n \text{ soluz. in } \mathbb{K})$
- 2) φ diagonalizzabile $\Leftrightarrow \sum_{k} \mu_{\text{geo}} k = n \ (\Rightarrow \mu_{\text{geo}} k = \mu_{\text{alg}} k \ \forall k)$

- $\begin{array}{l} \underline{\mathrm{Dim}}.\ 1)\ A\ \mathrm{triang.}\ \mathrm{sup.} \Rightarrow p_{\varphi}(t) = \prod_{i=1}^{n} (a_{i,i} t) \Rightarrow \sum_{k} \mu_{\mathrm{alg}} k = n \\ \Leftarrow \mathrm{per}\ \mathrm{induzione}\ \mathrm{su}\ \mathrm{dim}\ V = n \geq 1\ (n = 1\ \mathrm{banale}) \\ \psi\ \mathrm{dimostr.}\ \mathrm{preced.} \rightsquigarrow \sum_{k} \mu_{\mathrm{alg}}^{\psi} k = \sum_{k} \mu_{\mathrm{alg}}^{\varphi} k 1 = n 1 \\ \Rightarrow \psi\ \mathrm{triangolarizzabile} \Rightarrow \varphi\ \mathrm{triangolarizzabile} \end{array}$
 - 2) φ diagonalizzabile $\Leftrightarrow V = \bigoplus_k V_k \Leftrightarrow \sum_k \mu_{\text{geo}} k = n$
- Corol. $\varphi \in \text{End } V$, V spazio vettoriale su \mathbb{K} , dim $V = n < \infty$ $\exists k_1, \ldots, k_n \in \mathbb{K}$ autovalori distinti per $\varphi \Rightarrow \varphi$ diagonaliz.

 $\underline{\text{Dim}}$. $\mu_{\text{alg}}k_i = 1 \Rightarrow \mu_{\text{geo}}k_i = 1 \Rightarrow \sum_{i=1}^n \mu_{\text{geo}}k_i = n$

- Esempi: 1) $\sigma_y : \mathbb{R}^2 \to \mathbb{R}^2$ (riflessione rispetto all'asse x) \sim autoval. $= \pm 1$, sottosp. inv. $V_1 = \langle e_x \rangle$ e $V_{-1} = \langle e_y \rangle$ diagonalizzabile $(\mu_{\text{geo}}(1) = \mu_{\text{geo}}(-1) = 1)$
 - 2) $\eta_{y,h}: \mathbb{R}^2 \to \mathbb{R}^2$ (scorrimento parallelo all'asse x) \rightsquigarrow autoval. = 1, sottosp. inv. $V_1 = \langle e_x \rangle$ triang. ma non diagonal. $(\mu_{\text{geo}}(1) = 1, \, \mu_{\text{alg}}(1) = 2)$
 - 3) $\rho_{\alpha}: \mathbb{R}^2 \to \mathbb{R}^2$ (rotazione di angolo $\alpha \neq 0, \pi$) $\rightsquigarrow \nexists$ autovettore/autovalore, \nexists sottosp. inv. non ban. non triangolarizzabile (su \mathbb{R} , ma diagonaliz. su \mathbb{C})
- Note: ogni endomorf. φ è triangolariz. su \mathbb{C} (teor. fond. algebra), ma non necessariamente diagonalizzabile (per es. $\eta_{y,1}$); $\exists B$ base ord. t.c. $M(\varphi_B)$ è in forma canonica di Jordan, cioè una matrice diagonale a blocchi con blocchi del tipo

$$\begin{pmatrix} k & 1 & 0 & \dots & 0 & 0 \\ 0 & k & 1 & \dots & 0 & 0 \\ 0 & 0 & k & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & k & 1 \\ 0 & 0 & 0 & \dots & 0 & k \end{pmatrix}$$

univoc. determ. a meno dell'ordine $(k = \text{autoval. di } \varphi)$