Java 3D™ Programming:
A Technical Overview

icrosystems

Sudent Notes

micro!

Welcome & Objectives

After this seminar, you will be able to
® identify Java 3D classes and methods
@ design a Java 3D Scene Graph

@ write code with the Java 3D API
— with animation and interaction
— that runs standalone or in a browser

XSun.' '

systems 06-98 1

jet=
‘e
&

Student Notes

S Sun.

systems 06-98

micro!

Agenda

® Specifying Geometry
® Grouping Scene Graph Nodes
e Modifying Appearance
® Behaviors
— to add motion and action
e Collision, Picking
® The Java3D View Model
® Summary of Other Classes

Z e

A
&

Student Notes

Getting Started

® Buy the Book

— The Java 3D API Specification
® Web sites

— to download software, read FAQ

L] g

& ap

%%Siytl’mz | 06-98 3 | 1AV ;"')
Sudent Notes

Sowizral, Rushforth, Deering, The Java 3D API Specification (Addison-
Wedley, 1998; ISBN 0-201-32576-4)

Java 3D API pages

http://java.sun.com/products/java-media/3D
http://java.sun.com/products/java-media/3D/forDevel opers/java3dfag.html
http://www.sun.com/desktop/java3d

The Java 3D Repository
http://java3d.sdsc.edu/

Java 3D Land
http://www.tomco.net/~raf/java3d.html

@Sun.' &

systems 06-98 4

micro!

Java 3D

® API for writing 3D graphics
applications/applets
— can mix with regular Java, such as AWT events
® “\Write once, view anywhere”
® Scene Graph

— tree data structure
— describes entire scene (“Virtual Universe”)

A
&

Student Notes

Simple Scene Graph Example
@ VirtualUniverse

Locale

Behavior Node A ___ 4@
View

Shape3D ?&&\
ViewPlatform VL

S Sun. = 3D
* o698 R

microsystems

i

[

2
-

Student Notes

Assembling a Scene Graph

1. Create a Canvas3D object

2. Construct viewing branch graph (can use
SimpleUniverseconvenience utility)
— VirtualUniverse object
— high-resolution L ocale object
— ViewPlatform object

» which references a View object

» which in turn references PhysicalBody,
PhysicalEnvironment, and the earlier Canvas3D
objects -

S, | & aD
%ﬁg@y‘?g 06-98 6 Jwk
Sudent Notes

VirtuaUniverse, Locale, ViewPlatform, View, PhysicalBody,
Physical Environment, and Canvas3D are all Java 3D classes (in the package
javax.media,j3d.*).

The SimpleUniverse convenience class (in the package
com.sun.j3d.utils.universe.*) performs steps 2 & 3 for you. SimpleUniverseis
al you'll need for the vast majority of your applications.

Assembling a Scene Graph

3. Construct content branch graph
— for Geometry, Appearance, Behavior, etc.
— this branch graph can get quite complex

4. Optionally compile branch graphs
5. Insert both branch graphs into the Locale

L] a

£ o

@5@”} | 06-98 5 | Javis ;*
Sudent Notes

This course will initially focus on Step #3: how you can define 3D objects,
their appearance, and their actions. L ater, we will discuss the viewing
platform, locales, and other aspects which comprise the SimpleUniverse
branch graph.

L 't 1
@Sun' g
syslem:’ 06-98 8 A

micro!

Terminology

®live
— attached to scene graph tree
e compiled into optimized format
— prior to attachment to main scene graph
— cannot undo compile !!!
@ some actions rely uponlive or compiled
states

— for example, once live or compiled, capabilities
cannot be changed

A
&

Student Notes

XSun.' ' 2

systems 06-98 9

micro!

SceneGraph Traversal

@ Java 3D renderer chooses traversal order
® not restricted to left-to-right or top-to-
bottom

— except for spatially bounded attributes, such as
light sources, fog

— open to parallel processing

jet=
‘e
&

Student Notes

The Java 3D Renderer

@ starts running in an infinite loop

@ conceptually performs the following

operations:
whil e(true) {
Process i nput
If (request to exit) break
Per f or m Behavi or s
Traverse the scene graph
and render visible objects

}

d eanup and exit

syslem:’ 06-98 10

=

{04
W
&

Student Notes

Packages

® typical import statements

i nport javax.media.j3d.*;

i nport javax.vecmath.*;

inport comsun.j3d. utils.applet. Mai nFrare ;
inport comsun.j3d. utils.geonetry. Col or Qube ;
i nport comsun.j3d. utils.universe.?*;

i nport java.applet. Appl et;

i nport java.aw .BorderlLayout ;

i nport java.aw . Frare,;

inport java.aw .event.*;

$ | 2 al
%Szfﬂ 06-98 11 A
Sudent Notes

javax.media.j3d.* isthe package which contains the entire Java 3D object
hierarchy, including VirtualUniverse, Locale, ViewPlatform, View,
PhysicalBody, PhysicalEnvironment, and Canvas3D.

javax.vecmath.* is the package which contains low-level mathematical
constructs, such as vectors and matrices. This package is separated from
javax.media.j3d.*, because they can be widely used outside of Java 3D.
Although they are in adifferent package, the vecmath classes are frequently
used in Java 3D classes and their methods.

javax.vecmath.* classes are identified by data type (float, double, etc.) and
number of components (2D, 3D, or 4D vectors). Classesinclude V ector2f,
Vector3f, Vector3d, Vectordd, Point3d, and Matrix3f. There are al'so classes
for colors, texture coordinates, and quaternions.

com.sun.j3d.utils.*.* is the Convenience Utility library. There are several
subdirectories here: including applet, geometry, ui, and universe. Classes here
include SimpleUniverse and AWT helpers (to use input devices for picking or
general manipulation). MainFrame allows Java classes to be run as either an
applet or a standalone application. Also MainFrame adds an ActionListener,
so the window closes gracefully from the window system pop-up menu.

Generd Java 3D Facts

® default SimpleUniversevirtual world
coordinate system

— right-handed coordinate system
— back up several unitsin +z X
— look toward origin ,t
® angles are alwaysinradians rignt handed
® most set* () methods have corresponding
get* () methods
® physical world units are in meters

S Sun. '

microsystems 06-98 12

y

-.:!'1['1-'-'

A
‘\--.'C.'_'r

Student Notes

Java 3D also assumes:

* RGB color mode only; not color index

» double buffering exists and is enabled by default

* depth (2) buffering exists and is enabled by default

SceneGraphObject class

@ abstract class represents any scene graph
component

— methods common to everything in scene graph
— controls object capabilities

— setCapability() method very useful
» enables operations to be allowed when live or
compiled
» If already live or compiled, capability cannot be
changed
® superclassfor Node and NodeComponent
classes

S Sun. '

microsystems 06-98 13 JAA

= (s

A
‘\--.'C.'_'r

Student Notes

Java 3D Object Hierarchy
SceneGraphObject
Node
Group
Leaf
NodeComponent
SceneGraphObject methods
final bool ean getCapability(int bit)
final void setCapability(int bit)
final void clearCapability(int bit)
final bool ean isConpil ed()
final bool ean isLive()
voi d set User Dat a((bj ect user Dat a)
bj ect get User Dat a((hj ect user Dat a)

By default, all capabilities are turned off.

From now on, to reduce space, get* () methods which correspond to set* ()
methods will not be listed here.

Note: documented methods of Java 3D classes are public

Node

® superclassof Group and Leaf classes
® Node objects can be put directly into the
scene graph
— NodeComponent objects cannot be in a scene
graph tree, but can be referenced

Y
<
=

e
&,

micros; ys!ems“’ 06-98 14

Student Notes

Node methods (partial list)

final void setBounds(Bounds regi on)

final void set BoundsAut oConput e(bool ean aut oConput e)
final void getlLocal ToWworld(...)

Node cl oneTree(...)

Node cl oneNode(bool ean forceDupli cate)

voi d dupl i cat eNode(Node ori gi nal Node, bool ean forceDuplicate)
voi d set Pi ckabl e(bool ean pi ckabl e)

Node capabilities (partial list)

ALLONBOUNDS READ, ALLONBOUNDS WR TE

ALLOVN AUTO COVPUTE_BOUNDS READ

ALLON AUTO COWPUTE_BONDS WR TE

ENABLE_PI CK_REPCRTI NG

ALLOVNPI CKABLE READ, ALLONPI CKABLE WRI TE
ENABLE_QQLLI SI ON_REPCRTI NG

ALLONCOLLI DABLE_READ, ALLONCO.LI DABLE WR TE
ALLONLCOCAL_TO WNORLD _READ

Read capability usually has a corresponding Write capability. To reduce space,

they will be represented together with the shorthand READ | WRITE.

L eaf

@ has no children
— may reference NodeComponent objects

® superclassfor elements used in rendering
— such as geometry, lights, sounds
— Shape3D--important subclass

A Shape3D is a Leaf Node
Caeomet)

XSun.' E

microsyslem:’ 06-98 15 1AWA

= il‘ I..,.
A
&

Student Notes

Java 3D Object Hierarchy
SceneGraphObject
Node
Leaf

Background
Behavior
BoundingLeaf
Clip
Fog
Light
Link
Morph
Shape3D
Sound
Soundscape
ViewPlatform

L eaf method
voi d updat eNodeRef er ences(NodeRef er enceTabl e ref erenceTabl e)

Group

® may contain child node objects

@ superclassof important BranchGroupand
TransformGroupnodes

® addChild() method is used most often
(60

s Groups may have children

which are Leaf nodes or
other Group nodes

@Sun.'

: 16 pARA

microsystems 06-98

.-'ir:un'

A
\\--.TJ

Student Notes

Group subclass hierarchy

SceneGraphObject
Node
Group
BranchGroup
OrderedGroup
SharedGroup
Switch
TransformGroup

Group methods and capabilities (partial list)

When live or compiled, ALLOW_CHILDREN_READ enablesthe methods
final Node getChild (int index)
final int nunChildren ()

Similarly, ALLOW_CHILDREN_WRITE enables
final void setChild (Node child, int index)
final void insertChild (Node child, int index)
final void renmoveChild (int index)

And ALLOW_CHILDREN_EXTEND enables
final void addthild (Node child)
final void nmoveTo (BranchG oup branch@ oup)

NodeComponent

® superclassfor Geometry and A ppearance
classes

— and 14 other Java 3D classes

® Geometry may include coordinates, colors,
normals texture coordinates

@ Appearance objects may specify color,
texture parameters, culling, shading, etc.

Appearance and Geometry are
@ both NodeComponents
@Sun.' '

microsystems 06-98 17 JAA

= |

A
‘\--.'C.'_'r

Student Notes

A Shape3D leaf node references A ppearance and Geometry objects, which are
both NodeComponents.
NodeComponent subclass hierarchy (partial list)
SceneGraphObject
NodeComponent
Geometry
Appearance
ColoringAttributes
LineAttributes
PointAttributes
PolygonAttributes
RenderingAttributes
TextureAttributes
TransparencyAttributes
Material
Texture

NodeComponent methods (partial list)
final void setDuplicateOnd oneTree(bool ean dupli cate)
NodeConponent ¢l oneNodeConponent ()

voi d dupl i cat eNodeConponent (NodeConponent
ori gi nal NodeConponent)

Hello3D Applet/Application

® static program rendering one 3D object

Shape3D node
for ColorCube

z
T
A

SSun.

microsystems 06-98

Student Notes

SimpleUniverse is a convenience utility in the package
com.sun.j3d.utils.universe.* It creates abranch graph with aVirtualUniverse,
Locale, BranchGroup, MultiTransformGroup, and ViewPlatform objects. It
also creates other objects which are referenced by the ViewPlatform, such asa
PhysicalBody and Physical Environment.

The MultiTransformGroup is not a standard Java 3D class. It isaconvenience
utility class that supports several TransformGroup objects.

The entire Java 3D View Mode, including the convenience classes
SimpleUniverse and MultiTransformGroup are discussed much later.

Hello3D.java Constructor

/1 Scene graph constructed

Hel 1 03D() {
set Layout (new Bor der Layout ());
Canvas3D ¢ = new Canvas3D(nul I);
add("Center", c);
BranchGroup scene = creat eScene@ aph();
Si npl eUni verse u = new Si npl eUni verse(c);
u. addBranchGraph(scene); // nmakes it “live”

}

public static void main(String[] args) {
Frame frame = new Mai nFrame

(new Hel l 03D(), 256, 256);

SSun.' = 3D

microsystems 06-98 19

Student Notes

Note the Java 3D Canvas3D object is placed within a standard Java AWT container (with the
specified LayoutM anager).

The MainFrame object allows the class to be run as either a standalone application or as an
applet in aweb browser. The MainFrame class is Copyright (C) 1996-1998 by Jef Poskanzer
<jef@acme.com>. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, thislist of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS1S" AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

Visit the ACME Labs Java page for up-to-date versions of this and other fine Java utilities:
http://www.acme.com/javal

Create Hello3D Scene Graph

public class Hell 03D extends Applet {
public BranchG oup createSceneG aph() {
BranchGr oup obj Root = new BranchG oup();
TransfornmBD spin = new TransfornBI();
TransfornBD tenpspi n = new TransfornBD();
spin.rot X(Math. Pl /4.0d);
t enpspi n.rot Y(Mat h. Pl /5. 0d) ;
spi n. nul (t enpspin);
Transform@ oup obj Trans = new
Tr ansf or n3r oup(spi n) ;

obj Root . addChi | d(obj Trans) ;
obj Trans. addChi | d(new Col or Cube());
return obj Root;

}

SSun. '

microsystems 06-98 20 WA

= il- I..-.
W

Student Notes

createSceneGraph() creates several objects, such as a BranchGroup,
TransformGroup, and L eaf node.

The TransformGroup references a Transform3D class, which represents the
transformation matrix. Note the operations to generate the appropriate matrix.
In this example, the cube is rotated dightly, so that it looks more 3D.

The ColorCube classisin the Convenience Utility library:
com.sun.j3d.utils.geometry.ColorCube. The getShape() method retrieves the
Shape3D node of the ColorCube object.

Transform3D

e internally a4 x 4 transformation matrix
— matrices are row-major
— matrix multiplicationsare pre-multiplication
® TransformGroupcopies the matrix from a
Transform3D object

® Transform3D is neither a Node nor a

NodeComponent object
Qb_ [] i T '10
%‘SQ@ 06-98 21 _‘h" ra

Student Notes

Transform3D methods (partial list)

final void set(...)

final void setldentity()

final void setTransl ation(Vector3f or Vector3d)
final void setRotation(...)

final void setScale(...)

voi d rot X(doubl e angl e)

voi d rot Y(doubl e angl e)

voi d rot Z(doubl e angl e)

final void mil (...)

final void transpose(...)

final void invert()

final doubl e determ nant ()

final void transforn{Vector4d vec, vector4d vecQut)

Avoid the use of the View Model Compatibility Mode methods (described in
Appendix C.11), which make it hard to use stereo or head-tracking input.

Shape3D

@ references shape's Geometry and

Appearance
— Geometry and A ppearance are subclasses of
NodeComponent
/s\
® key methods i
— setGeometry(Geometry) @
— SetAppearanceg A ppearance)

» If Appearanceis null, then default values used

Zje
W
A=)

SSun.

microsystems 06-98 22

Student Notes

Shape3D capabilities:
ALLOW_GEOMETRY_READ |WRITE
ALLOW_APPEARANCE_READ |WRITE
ALLOW _COLLISION_BOUNDS READ |WRITE

Shape3D methods (partial list)

final void setCGeonetry(Geonetry geonetry)

final void set Appear ance(Appear ance appear ance)

final void setCollisionBounds(Bounds bounds)

Node cl oneNode(bool ean forceDupli cate)

voi d dupl i cat eNode(Node ori gi nal Node, bool ean forceDuplicate)
voi d updat eNodeRef er ences(NodeRef er enceTabl e ref erenceTabl e)

Hello3D.html

@ allows class to be viewed in web browser

<HTM.>

<HEAD>

<TI TLE>Hel | 0, 3D</TI TLE>
</ HEAD>

<BODY BGCOLOR="#000000">

<appl et al i gn=m ddl e code="Hel | o3D. cl ass" wi dt h=256
hei ght =256>

<bl ockquot e>

<hr >

If you were using a Java 3D capabl e browser,

you woul d see Hell o 3D instead of this paragraph.
<hr >

</ bl ockquot e>

</ appl et >

</ BODY>

L </ HTM_>

@Sun | 06-98 23 | ;;- -"'E"F

microsystems

-
-~

Student Notes

SSun. E

systems 06-98 24

micro!

ThingsTo Do

® Run Hello3D as both a standalone
application or in aweb browser (use
appletviewer)

® Visit several of the web sites with Java 3D
information

=
S

Student Notes

Geometry Object Hierarchy

SceneGraphObject

N
GeometryStripArray ‘ TriangleStripArray
TriangleFanArray

% IndexedLineArray
\ rTTTT—
e T r—
t
CompressedGeometry

IndexedGeometryStripArray

IndexedLineStripArray
IndexedTriangleStripArray
IndexedTriangleFanArray

S S1n.! & oD
%m%@ 06-98 o5 a7

Student Notes

GeometryArray (and subclasses) store coordinate and related information for

each vertex in one or more arrays. A Shape3D object references one Geometry
object for its data.

GeometryArray capabilities:
ALLOW_COORDINATE_READ |WRITE
ALLOW_COLOR_READ |WRITE
ALLOW_NORMAL_READ |WRITE
ALLOW_TEXCOORD_READ |WRITE
ALLOW_COUNT_READ

Describing 3D Geometry

— consists of separate arrays of
» coordinates
» normals
» RGB and RGBA colors
» texture coordinates

— coordinates are in local coordinates

® GeometryArray class and its subclasses

QSun. < 3D
microsyslems" 06-98 26 1 .r"'-.-
Student Notes

GeometryArray constructor:

CeonetryArray (int vertexCount, int vertexFornat)

vert exFor mat

COORDINATES

NORMALS

COLOR_30or COLOR_4

TEXTURE_COORDINATE_2 or TEXTURE_COORDINATE_3

GeometryArray methods (partial list):
i nt getVertexCount ()
i nt get VertexFormat ()

final
final
final
final
final
final
final
final
final

voi d
voi d
voi d
voi d
voi d
voi d
voi d

set Coordinate(...)

set Coordi nates(...)
setColor(...)
setColors(...)

setNormal (...)

set Normal s(...)

set Text ur eCoor di nates(. . .)

Isamask indicating what is present in each vertex:

Indexed Geometry

@ indexed arrays
— indexed versions of previous 7 classes

of multiple elements
— non-sequential access

— can access individual array elements or arrays

L
@Sun.' -
microsys!ems" 06-98 27 !

A
‘\--.'C.'_'r

Student Notes

IndexedGeometryArray capabilities:
ALLOW_COORDINATE_INDEX_READ |WRITE
ALLOW_COLOR_INDEX_READ |WRITE
ALLOW_NORMAL_INDEX_READ |WRITE
ALLOW_TEXCOORD_INDEX_READ |WRITE

IndexedGeometryArray methods (partial list):

final void setCoordinatel ndex(int index, int coordinatel ndex)

final void setCoordinatel ndices(int index, int coordinatelndices[])

final void setCol orlndex(int index, int colorlndex)
final void setCol orlndices(int index, int colorlndices[])
final void setNormal Il ndex(int index, int normnallndex)

final void setNormal Indices(int index, int normallndices[])

final void setTextureCoordi nat el ndex(int index, int texCoordlndex)

final void set TextureCoordi nat el ndi ces(int index, int
t exCoor dl ndi ces[])

final int getlndexCount()

® javax.vecmath.* package

and type of components:
Tuple4f, Tuple4d

classes

M athematical Classes

® 7 Tupleclasses, each differing by number
— Tuple2f, Tuple3b, Tuple3f, Tuple3d, Tupledb,

— Many other classes are derived fromTuple

D [] i'
%ﬁg@y‘?g 06-98 28 A -‘1 D
Sudent Notes
Tuple Object Hierarchies:
Tuple2f Tuple3f Tuplesf
Point2f Point3f Point4f
TexCoord2f TexCoord3f Quat4f
V ector2f V ector 3f V ector4f
Color3f Color4f
Tuple3d Tupledd
Point3d Point4d
Vector3d Vector4d
Quat4d
Tuple3b Tupledb
Color3b Colordb

Other Math Objectsinclude AxisAngledd, AxisAngledf, GV ector, Matrix3f,

Matrix3d, Matrix4f, Matrix4d, and GM atrix

M athematical Classes

® GVector and GMatrix classes are general
and dynamicallyresizeable
@ can accessTuplevariables directly

— public variables named x, y, z, and w
Poi nt 3f point = new Poi nt 3f () ;
point.x = 1.0;

@ methods supported forTuple and subclasses

S, | % oD
%ﬁg@y‘?g 06-98 s JWK
Sudent Notes

java.vecmath methods (partial list for only a couple of classes):
Tuple*

final void set(...)

final void add(...)

final void sub(...)

final void negate(...)

final void absolute(...)

final bool ean equal s(...)

Point* (inherits all Tuple* methods, too)
final float distance(Point*)

Vector* (inherits all Tuple* methods, too)
final float dot(Vector*)
final float |ength()
final void normalize(...)
final float angle(Vector*)

XSun.'

systems 06-98 30 itk

micro!

Tetrahedron Application

@ renders several static 3D objects

e ColorTetrajava
— creates Geometry object from scratch
— used by Shapejava

s
S

Student Notes

ColorTetrajava

i mport javax.nedia.j3d.*;

i mport javax.vecnath. *;

public class Col orTetra extends Shape3D {

/1 calculations of ycenter, zcenter, sqrt* deleted for space
private static final Point3f pl = new Point3f (-1.0f,
-ycenter, -zcenter);
private static final Point3f p2
-ycenter, -zcenter);
private static final Point3f p3 = new Point3f (0.Of,
-ycenter, -sqrt3 - zcenter);
private static final Point3f p4 = new Point3f (O0.Of,
sqrt24_3 - ycenter, 0.0f);
private static final Point3f[] verts = {

new Poi nt 3f (1.0f,

pl, p2, p4, /1 front face
pl, p4, p3, /1 left, back face
p2, p3, p4, /1 right, back face
pl, p3, p2, /1 bottom face

&

] y |
QSun =&

microsystems

-
-~

Sudent Notes

ColorTetrajava

/1 definitions of cl...c4 deleted to save space
private static final Color3f[] colors = {
cl, c2, c4,// front face
cl, c4, c3,// left, back face
c2, c3, c4,// right, back face
cl, c3, c2,// bottomface
h
public ColorTetra() {

TriangleArray tetra = new Triangl eArray (12,
Triangl eArray. COORDI NATES | Triangl eArray. COLOR 3);

tetra. setCoordi nates(0, verts);
tetra. setCol ors(0, colors);
this.setGeonetry(tetra);

this. set Appearance(null);

= irl..,.
A
&

’%& Sun.! |

microsyslem:’ 06-98 32 1AWA

Student Notes

Since the colors are specified in the Geometry object (TriangleArray), these
values override any colors which are set in the A ppearance node component
object.

Convenience Utilities

@ higher level functionsin Utility package
@ com.sun.j3dutils.geometry.* for geometry

@ available classes

— Primitive (and derived classes)
» Box
» Sphere
» Cylinder
» Cone

— can reguest normals, texture coordinates

S, | & aD
%ﬁg@y‘?g 06-98 3 WK
Sudent Notes

Java 3D isintended to cover the basics of creating and maintaining a scene
graph. The core Java 3D package is meant to remain small. The Utility
packages are the place for additional functionality.

For example, the Shape3D classisthe only classin the standard Java 3D
package to represent a geometric object. The Box, Sphere, Cylinder, and Cone
classes are additional, specific, geometric objects and are in the Utility
package. Future functionality, such asNURBS, likely would be added as
Utility classes, not in the core Java 3D package.

Appearance

@ Shape3D nodes refer to an Appearance
object

® Appearance objects usually reference other
* Attributes objects

® also controls lighting and texturing
attributes (to be covered later)

*Attributes

= il- I..-
\

34 1AM

Student Notes

Attribute capabilities (excluding lighting and texturing):
ALLOW_COLORING_ATTRIBUTES READ |WRITE
ALLOW_TRANSPARENCY_ATTRIBUTES READ |WRITE
ALLOW_RENDERING_ATTRIBUTES READ |WRITE
ALLOW_POLYGON_ATTRIBUTES READ |WRITE
ALLOW_LINE_ATTRIBUTES READ |WRITE
ALLOW_POINT_ATTRIBUTES READ |WRITE

Attribute methods (partia list, excluding lighting and texturing):

final void setColoringAttributes(ColoringAttributes
col ori ngAttri but es)

final void setTransparencyAttributes(TransparencyAttributes
transparencyAttri but es)

final void setRenderingAttributes(RenderingAttributes
renderi ngAttri but es)

final void setPol ygonAttributes(Pol ygonAttributes pol ygonAttri butes)
final void setLineAttributes(LineAttributes lineAttributes)
final void setPointAttributes(PointAttributes pointAttributes)

Severa Attributes classes

e ColoringAttributes

— color, shading (flat or Gouraud)
® LineAttributes

— line pattern (dotted, dashed), thick,antialiased
@ PointAttributes

— Size, antialiased

Y
<
=

e
&,

micros; ys!ems“’ 06-98 35

Student Notes

ColoringAttributes methods:
final void setColor(...)
final void set ShadeMddel (i nt shadeMbdel)

where shadeMbdel is one of the following constants:
FASTEST, N CEST, SHADE FLAT, Or SHADE GOURAUD

LineAttributes methods:

final void setLineWdth(float |ineWdth)

final void setLinePattern(int |inePattern)

wherel i nePattern isone of the following constants: PATTERN SCLI D,
PATTERN DASH, PATTERN DOT, Or PATTERN DASH DOT.

final void setLineAntialiasi ngEnabl e(bool ean st ate)

PointAttributes methods:
final void setPointSize(float pointS ze)
final void setPointAntialiasi ngEnabl e(bool ean st ate)

Severa Attributes classes

® PolygonAttributes
— rendering mode (points, wire frame, or filled)
—culling
— depth offset (for rendering wire frame atop
filled)
@ Rendering Attributes
— alphatest, disabling z-buffer
® TransparencyAttributes
— blended or screen door

S, | % oD
%Szfﬂ 06-98 O T
Sudent Notes

PolygonAttributes methods and constants:
final void setQull Face(int cull Face)

where cul | Face isone of thefollowing: CULL_NONE, CULL_FRONT, or
QULL_BAXK

final void setPol ygonMode(i nt pol ygonhbde)

where pol ygonMde isone of the following: POLYGON PO NT, or
PCLYQON LI NE, PCLYGON FI LL

final void setPol ygonOfset (fl oat pol ygonOrfset)

RenderingAttributes methods and constants:

final void set Dept hBuf f er Enabl e(bool ean st at e)
final void setDept hBuf f er Wit eEnabl e(bool ean st at e)
final void set Al phaTest Val ue(fl oat val ue)

final void setAl phaTest Functi on(int function)
TransparencyAttributes methods and constants:

final void setTransparency(fl oat transparency)
final void setTransparencyMde(int transparencyMde)

wheret r anspar encyMde isone of the following: FASTEST, N CEST,
SCREEN DOOR, BLENDED, Or NONE.

- .i. 1
@Sun.' g
syslems“’ 06-98 37 h“' A

micro!

ThingsTo Do

@ run Shape and Appear (which both use
ColorTetrg
® modify the code to create a shape of your
own
— for example, useLineArray or TriangleArray
— try different colors and/or other attributes
— Hard: create an octahedron oricosahedron
® modify the scene with more Primitives from
the Convenience Utility library

A
\\--.TJ

Student Notes

Group subclasses

@ BranchGroup

® TransformGroup A @©

e Switch A
— render chosen child branch graph

® OrderedGroup

— render children branch graphs in specific order
— DecalGroup subclass for coplanar objects
@ SharedGroup

— same branch graph instance, referenced from
multiple Link objects

QSun. &

microsystems 06-98 38

A
\\--.TJ

Student Notes

A Switch node has a bitmask, which can mark severa children for rendering.

BranchGroup

® only group which may be detached (or
reparented) whilelive

® call compile() to optimize entire branch
graph
— compiling is highly recommended
— compiling cannot be undone

® only object that you can add to aLocale

. L
e af)
%%SZY!"? | 06-98 39 | A ;’
Sudent Notes

BranchGroup capability:
ALLOW _DETACH

BranchGroup methods (partial list):
final void conpile()
final void detach()

There are also several methods related to picking.

Y ou will often insert BranchGroups into your scene graph, just to support
detachability.

TransformGroup

® L eaf node' slocal coordinates are
transformed by Transform3D matrix

— objects transformed include points,normals,
and distances
o effect of all TransformGroupsin path from
L ocale to the Leaf node are combined

® can be used to transform geometry, light
source position, ViewPlatform etc.

$ | 2 al
%ﬁg@y‘?g 06-98 40 A
Sudent Notes

TransformGroup capabilities:
ALLOW_TRANSFORM_READ |WRITE

TransformGroup method (partial list):

final void setTransforn{Transforn8D t1)

Node cl oneNode(bool ean forceDupli cate)

voi d dupl i cat eNode(Node ori gi nal Node, bool ean forceDuplicate)

XSun.' &

systems 06-98 41 WA

micro!

ThingsTo Do

® Modify theTransformGroug Transform3D
in the addShapg)) method of Shapejavaor
Appearjava

— be careful: transformation operations are non-
commutative! Ordering isimportant.

=
S

Student Notes

Lighting

® based upon Phong model
@ create at least one Light
e for lighted Shape3D objects

normals

T T ST

— Geometry must be defined with surface

— use setMaterial() method of Appearance
— for Material object, setLightingEnablgtrue)

a2

-.:!'1['1-'-'

=

A
‘\--.'C.'_'r

Student Notes

Java 3D Object Hierarchy
Leaf
Light

AmbientLight

DirectionalLight

PointLight

SpotLight

Light capabilities:
ALLOW_INFLUENCING_BOUNDS READ |WRITE
ALLOW_STATE_READ |WRITE
ALLOW_COLOR_READ |WRITE

Light methods:

final void setEnabl e(bool ean st ate)

final void setCol or (Col or3f col or)

final setlnfluenci ngBounds(Bounds regi on)

final setlnfluenci ngBoundi ngLeaf (Boundi ngLeaf regi on)

and several more involving scope of the light source.

Light (Sources)

® subclasses of Light
— AmbientLight
— DirectionalLight (infinite)
— PointLight (local)

» SpotLight A

® must have associated Bounds object
® priority in scene graph traversal
@ can limit scene graph scope

S ' 2 2D
%ﬁg@y‘?g 06-98 s W
Sudent Notes

Make certain that the light source is associated to a Bounds object. If the light
appears to have no effect, check thisfirst.

DirectionalLight capabilities and methods:

ALLOW_DIRECTION_READ |WRITE
final void setDrection(...)

PointLight capabilities and methods:
ALLOW_POSITION_READ |WRITE

ALLOW_ATTENUATION_READ |WRITE
final void setPosition(...)
final void setAttenuation(...)

And several more capabilities and methods for SpotLight (including control of
concentration and spread angle).

Appearance (for Lighting)

® Material
— diffuse color
» can specify material transparency
— ambient color

— specular color
» shininess exponent [1.0, 128.0]

— emissive color

SSun = 3D

microsystems 06-98 44 WA

Student Notes

Appearance capability and method (pertaining to lighting)

ALLOW_MATERIAL_READ |WRITE
final void setMaterial (Material naterial)

Material constructor

Mat eri al (Col or 3f anbi ent Col or, Col or3f emm ssi veCol or, Col or 3f
di ffuseCol or, Col or3f specul arCol or, float shininess)

Material methods (partial list)

final void setLightingEnabl e(bool ean state)
final void setAnbientColor(...)

final void setEm ssiveColor(...)

final void setD ffuseColor(...)

final void setSpecularColor(...)

final void set Shininess(float shininess)

Bounds

@ used for region of

— influence (scope) for Fog and Light
» setlnfluencingBounds(Bounds) method

» setA pplicationBounds(Bounds) method

Sound
» setSchedulingBounds(Bounds) method

— region defined in local coordinate system

— activation for Background, Clip, andSoundscape

— scheduler execution culling for Behavior and

® BoundingL eaf can override typical Bounds

S, ' iﬁ qf}
% ﬁs’tyt?mz 06-98 s WK
Sudent Notes

Java 3D Bounds Object Hierarchy
Bounds
BoundingBox
BoundingPolytope
BoundingSphere

M ethods common to Bounds (or subclasses) objects:

voi d set (Bounds bounds(bj ect)

bool ean intersect(...)

Bounds cl osest I nt ersecti on(Bounds boundsChj ects[])
voi d conbine(...)

void transforn(...)

bool ean i sEnpty()
oj ect cl one()

BoundingBox, BoundingPolytope, and BoundingSphere also have class-
specific methods, based upon the shape of the bounding region (such as

setRadius() or setPlanes()).

Lit.java (Lights)

private void createlights(BranchG oup graphRoot) {

Boundi ngSpher e bounds = new Boundi ngSpher e(new
Poi nt 3d(0.0,0.0,0.0), 100.0);

Col or 3f al Col or = new Col or 3f (0. 2f, 0.2f, 0.2f);
Anbi ent Li ght alLgt = new Anbi ent Li ght(al Col or);
alLgt. set | nfl uenci ngBounds(bounds) ;

gr aphRoot . addChi | d(aLgt) ;

Col or3f I Colorl = new Col or3f(0.9f, 0.9f, 0.9f);
Vector3f IDirl = new Vector3f(1.0f, 1.0f, -1.0f);

Directional Light 1 gtl = new
Directional Light(l Colorl, I1Dr1l);

| gt 1. set | nfl uenci ngBounds(bounds) ;
gr aphRoot . addChi I d(I gt 1);

}
) . & oD
%%ﬁstyt?mz 06-98 46 WA

Sudent Notes
In the Lit.java example, two lights are created: one ambient and one

directional (infinite).

Very important : note the BoundingSphere is created first, so that both lights
can use it.

XSun

microsyslem:’ 06-98 47 1AWA

Lit.java(Materials)

private void createMaterial s(Appearance[] mats) {

Col or 3f bl ack = new Col or 3f (0. 0f, 0.0f, 0.0f);

Col or 3f deepRed = new Col or 3f (0. 9f, 0.2f, 0.1f);

Col or 3f royal Blue = new Col or 3f (0. 1f, 0.3f, 0.9f);

Col or 3f white = new Col or3f (1. 0f, 1.0f, 1.0f);

for (int i =0; i < 4; i++)
mats[i] = new Appear ance();

mat s[0] . set Mat eri al (new Materi al (deepRed, bl ack,
deepRed, black, 1.0f));

mat s[1] . set Materi al (new Materi al (royal Bl ue, bl ack,
royal Bl ue, black, 1.0f));

mat s[2] . set Materi al (new Materi al (deepRed, bl ack,
deepRed, white, 25.0f));

mat s[3] . set Materi al (new Materi al (royal Bl ue, bl ack,
royal Blue, white, 25.0f));

-:'ﬂr'iﬂ-)

A
&

Student Notes

XSun.'

systems 06-98

micro!

ThingsTo Do

® Run the application/applet Lit

e Modify Litjavato experiment with
— different materials
— PointLight (local light sources)
— additional light sources

48 I

I
&

Student Notes

Behavior

® processing for
— animation & motion
— keyboard & mouse input
— picking
— collisions
@ superclassof Interpolator /i\

QSun 2 5D
microsystems 06-98 a9 WK
Sudent Notes
Java 3D Object Hierarchy
Leaf
Behavior
Billboard
LOD
DistanceLOD

Interpolator

Behavior
® requires a scheduling region

— Bounds object
@ initialize() method called once when the
behavior becomes "live"
— establish initial wakeup condition(s)
® processStimulug) method called whenever
wakeup condition
— must reset next wakeup condition(s)

S, | % oD
%ﬁg@y‘?g 06-98 o WK
Sudent Notes

The Bounds node defines a spatial volume that serves to enable the scheduling
of Behavior nodes. A Behavior node is active (can receive stimuli) whenever a
ViewPlatform's activation volume intersects a Behavior object's scheduling
region. Only active behaviors can receive stimuli.

WakeupCriterion is a subclass of WakeupCondition.

WakeupCriterion

® WakeupOnAWTEvent
— specified AWT event occurs

® \WakeupOnBehaviorPost

® WakeupOnActivation
® WakeupOnDeactivation

— abehavior is schedulable or no longer
schedulable (enters or exits scheduling region)

— specified Behavior object posts a specific event

@Sun.' £ 3D
microsystems 06-98 WA
Sudent Notes
Java 3D WakeupCondition Hierarchy
WakeupCondition
WakeupCriterion
WakeupOnAWTEvent
WakeupOnBehaviorPost
WakeupOnActivation
WakeupOnDeactivation
WakeupOnElapsedFrames
WakeupOnElapsedTime
WakeupOnSensorEntry
WakeupOnSensorExit
WakeupOnViewPlatformEntry
WakeupOnViewPlatformExit
WakeupOnTransformChange
WakeupOnCollisionEntry
WakeupOnCollisionExit
WakeupOnCollisionMovement
WakeupOr Boolean combinations of WakeupCriterion arrays:
WakeupAnd
WakeupAndOfOrs

WakeupOrOfAnds

WakeupCriterion

® WakeupOnElapsedFrames
— specified number of frames have been drawn

® WakeupOnElapsedTime
— gpecified timeinterval elapses

® WakeupOnTransformChange
— specified TransformGroup node's transform
changes
@;; S [] f_' qﬂ_

microsystems 06-98 52

Student Notes

And afew more:
o WakeupOnSensorEntry
o WakeupOnSensorExit
— center of a specified Sensor enters/exits a specified region
o WakeupOnViewPlatformEntry
o WakeupOnViewPlatformExit
— center of aViewPlatform enters/exits a specified region

Wakeup conditions related to collision detection are covered later.

Initializing WakeupCriterion

@ define theinitialize() method

— wakeupOn() method of a Behavior object
® Boolean operations onWakeupCriterion

Arrays for multiple criteria

— WakeupOr

— WakeupAnd

— WakeupAndOfOrs

— WakeupOrOfAnds

Z e

A
&

microsystems 06-98 53

@Sun. -

Student Notes

MouseBehavior.java

@ in com.sun.j3dutils.ui.* Utility package

public void initialize() {
nouseEvents = new WakeupCriterion[3];

nouseEvent s| 0] = new WWakeupOnAWIEvent
(MouseEvent . MOUSE_DRAGGED) ;

nouseEvent s[1] = new WakeupOnAWIEvent
(MouseEvent . MOUSE_PRESSED) ;

nouseEvent s[2] = new WWakeupOnAWIEvent
(MouseEvent . MOUSE_RELEASED) ;

nmouseCriteri on = new WakeupOr (nmouseEvents);
wakeupOn (nouseCriterion);
// other initialization

}

S Sun. E

microsystems 06-98 54 IAVA

= il- I..-.
\

Student Notes

MouseBehavior is an abstract class in the com.sun.j3d.utils.ui.* Convenience
utilities package. It isthe base class used to derive the MouseDrag,
MouseZoom, MouseTranglate classes. These 3 classes define the
processStimulus() method to handle mouse pressing, dragging, and releasing,
and to change those AWT eventsinto matrix operations to a TransformGroup
node.

MouseDrag causes the left mouse to spin (rotate) an object
M ouseZoom causes the middle mouse to translate an object in z
MouseT randate causes the right mouse to trandate an object in x or y

SpinMouse.java

Transf or "3 oup nmouseG oup = new Transforn3 oup();
mouse@ oup. set Capabi l ity (Transform& oup. ALLON TRANSFORM READ) ;
mouse@ oup. set Capabi l ity (Transform& oup. ALLON TRANSFORM WRI TE) ;

Boundi ngSpher e bounds = new Boundi ngSpher e (new
Poi nt 3d(0.0,0.0,0.0), 100.0);

MouseDr ag behavi orl = new MouseDr ag(nouseQ oup);

mouse@ oup. addChi | d(behavi or1);

behavi or 1. set Schedul i ngBounds (bounds) ;

MouseZoom behavi or2 = new MouseZoom(nouseQ oup) ;

mouse@ oup. addChi | d(behavi or 2) ;

behavi or 2. set Schedul i ngBounds (bounds) ;

MouseTr ansl at e behavi or3 = new MuseTr ansl at e (nouseG oup) ;
mouse@ oup. addChi | d(behavi or 3) ;

behavi or 3. set Schedul i ngBounds (bounds) ;

= il- I..-.
\

S Sun. '

microsystems 06-98 55 WA

Student Notes

This portion of the SpinM ouse.java code shows how to create objects, using
the MouseDrag, MouseZoom, and MouseTrandate classes from the
Convenience Utility library. The mouseGroup is the TransformGroup, which is
the parent of the scene subgraph for the Geometry objects in the scene.

Note these actions are hardwired in the Convenience library to the first,
second, and third mouse buttons. Also hardwired are the rates of rotation and
tranglation for these three actions. If you want to alter these, you must create
your own classes, derived from either the M ouseBehavior Convenience Utility
or the standard Java 3D Behavior class, for different event handling. See
MyMouse.javain one of the Tennis programs for an example of how to do
this.

Alphaand Interpolators

® Alpha

— time in milliseconds mapped onto an Alpha
value in the range [0.0, 1.0]

— Alpha value mapped onto a value appropriate to
the predefined behavior's range of outputs

— not to be confused with transparency channel

® Interpolator objects define common time-to-
Alpha-to-behavior mappings

S, | % oD
%Szfﬂ 06-98 5 WK
Sudent Notes

Alphaconstructors:

A pha(int |oopCount, long triggerTine, |ong
phaseDel ayDurati on, |ong increasi ngAl phaluration, |ong
i ncr easi ngAl phaRanpDur ati on, |1ong al phaAt OnheDur at i on)

Al pha(int | oopCount, int nmode, long triggerTinme, |ong
phaseDel ayDurati on, |ong increasi ngAl phaluration, |ong

i ncr easi ngAl phaRanpDur ati on, |1ong al phaAt OneDurati on, | ong
decr easi ngAl phaDur ati on, |ong decreasi ngAl phaRanpDur ati on,
I ong al phaAt Zer oDur at i on)

Note: loopCount of -1 means infinite loop

Alphamethods (partial list):

bool ean fi ni shed() /] “"past activity”--all |ooping conpleted
float val ue() // between 0.0 and 1.0--is it, now?

fl oat val ue(long atTine)

void setStart Time(long startTine)

Note: setting startTime to the current time restarts an Alpha object

Interpolators

® Java 3D predefines several Interpolators to
— manipulate transforms within a

TransformGroup A @

— modify the values of a Switch node

— modify Material attributes such as color and
transparency

® Interpolator constructor example

Rot ati onl nterpol ator (Al pha al pha, TransfornG® oup
target, TransfornBD axisCRotation , float
m ni nunAngle , float maxi mumAngl e)

= il- I..-.
\

S Sun. E

microsystems 06-98 57 JAA

Student Notes

Very common to derive a specia subclass of an existing Interpolator class,
overriding processStimulus() method to do something special.

Java 3D Object Hierarchy
Leaf
Behavior
Interpolator
ColorInterpolator
PositionInterpolator
RotationInterpolator
Scalelnterpolator
SwitchValuelnterpolator
Transparencylnterpolator
Pathinterpolator
PositionPathinterpolator
RotationPathInterpolator
RotPosPathinterpolator
RotPosScalePathinterpolator

Another example of an Interpolator constructor:

Posi ti onPat hl nt er pol at or (Al pha al pha, Transforn®oup target,
Transforn8D axi sOf Transl ati on, float knots[], Point3f
positions[])

Spinjava

Transforn oup spinTrans = new Transforn3 oup();

spi nTrans. set Capabi l ity (Transforn® oup. ALLON TRANSFORM WRI TE) ;

spinTrans. set Capabi l ity (Transforn® oup. ALLON TRANSFORM READ) ;

TransfornBD rAxi s = new Transforn8D();

rAxis.rotZ (Math.PlI/2.0f);

Al pha rotationAl pha = new Al pha(-1, Al pha.| NCREASI NG ENABLE, 0, O,
5000, 0, O, O, O, 0);

Rot ati onl nterpol ator rotator = new
Rot ati onl nt er pol at or (rotati onAl pha, spinTrans, rAxis, O0.Of,
(float) Math.PlI*2.0f);

Boundi ngSpher e bounds = new Boundi ngSpher e (new
Poi nt 3d(0.0,0.0,0.0), 100.0);

rot at or. set Schedul i ngBounds (bounds) ;
par ent . addChi | d(newTr ans) ;

newlr ans. addChi | d(rotator);

newlr ans. addChi | d(spi nTrans);

& 11 & o
% mtyt?mz 06-98 g WK 7
Sudent Notes

Spinjava:

o Creates a TransformGroup, spinTrans, which can be read and write, while

live.

o Creates an Alpha object that loops infinitely and takes 5 seconds (5000
milliseconds) to linearly cycle from 0.0 to 1.0.

o Creates a new Behavior object (Rotationlnterpolator) that performs the
desired operation on the specified transform object.

o Creates a Bounds object for when to schedule the Behavior.
¢ adds the Behavior object into the scene graph.

Note neither the BoundingSphere, nor the Alpha are added directly to the
scene graph. Rather the Rotationlnterpolator references both those objects.

ThingsTo Do

® Run the applications/applets Spin,
SpinLight, SpinMousg and Tennisl

® Modify either Spin orSpinLightto
experiment with

— different values for Alpha, such as having both
DECREASING_ENABLE |
INCREASING_ENABLE

— different interpolators, such as the
PositionPathl nterpol ator

e Make a mouse button turn on and off the
| nterpolator action

$ | 2 al
%ﬁstyt’mz 06-98 59 A
Sudent Notes

Tennisl is an applet/application which shows a couple of table tennis paddles.
When the left mouse is pressed, moving the mouse in the x direction moves
the nearest paddle from left to right. Pressing the middle mouse causes a ball
to be launched. Otherwise, it’s pretty boring, because there are no collision
detection and therefore no volleying. Tennis2 will add collision detection.

Tennisl consists of several classes. Here are alist of those classes, with brief
descriptions:

Tennisl: whereal theinitial construction takes place. The scene graph is
started from here, light sources are initialized, and main() is here.

Ball: a Sphere which represents the ping-pong ball.

Paddle: three cylinders (with different Material objects) form atable tennis
paddle shape.

BallInterp: an Interpolator which moves the Ball along a path.
RandPos: choose a random position for objects to be moving towards.
MyM ouse: wakes up on left mouse input and controls position of near paddle.

MouseFire: wakes up on middle mouse; creates and moves Ball. Thisisthe
only class that changes between Tennisl and Tennis2.

Collision

® Specific Type of Behavior Node
— collisions against Group, Shape3D, or Morph

— can detect either collision with actual geometry
or with bounding node

e Collision WakeupConditions
— WakeupOnCaollisionEntry
— WakeupOnCaollisionExit
— WakeupOnCaollisionM ovement

S ' 2 2D
%ﬁg@y‘?g 06-98 o Wk
Sudent Notes

Java 3D Caollision Criterion Hierarchy
WakeupCondition
WakeupCriterion
WakeupOnCollisionEntry
WakeupOnCollisionExit
WakeupOnCollisionMovement

Explanations of Collision WakeupConditions

o WakeupOnCaollisionEntry
Collision detected between a specified geometry or bounding object
and any other object

o WakeupOnCaollisionExit
Specified geometry or bounding object no longer collides with any
other object

o WakeupOnCollisionM ovement

Movement occurs between a specified geometry or bounding object
and any other object with which it has already collided

CollisionDetector.java

public class CollisionDetector extends Behavior {
private WakeupOnCol |'i si onEntry wEnter;
/1lots of code deleted....
/1 establish behavior state variables and
/1 initial collision detection Wakeup Condition
public void initialize() {
wEnt er = new WakeupOnCol | i si onEnt ry(shape);
wakeupOn(went er) ;
}
public void processStimul us(Enuneration criteria) {
/1 process the collision
/1 prepare for subsequent collision (re-entry)
wakeupOn(wEnt er) ;

}
} .
N [
5 'E;I
@éﬂ.@ | 06-98 61 | _:EJ. ;"’)

Student Notes

Thisisatemplate for a CollisonDetector class. A fleshed out exampleisin
CollisonDetector.java, as part of the Tennis2 program.

Tennis2 Scene Graph

SimpleUniverse

moveAway @
Nseﬁre
A 69

A A A

MyMouse Paddlelnterp

Collision

Balllnter
Detector P

SSun = 3D

microsystems. 06-98 62 JAA

Student Notes

Thisisthe scene graph for the Tennis2 program, only while the Ball isin
motion. The two highlighted BranchGroup objects are added to the scene
graph when the Ball is active. When the Ball goes out of play, these two
subgraphs are detached.

Both the Paddle and Ball classes are derived from the TransformGroup. The
resulting objects consist of a TransformGroup atop one or more Shape3D
nodes and associated A ppearance objects.

Picking
® Pick* classes return picked scenesubgraphs

® usual picking model

— set capability for pickable scene graph nodes to
ENABLE PICK_REPORTING

— AWT event (mouse button) starts
— draw a PickShape (point, ray, or segment) at
chosen mouse position

— array of SceneGraphPath objects returned, with
all objects which have intersected PickShape

— process the array
S | & oD
%ﬁg@y‘?g 06-98 e WK
Student Notes

Java 3D Picking Shape Hierarchy
PickShape

PickPoint

PickRay

PickSegment

A SceneGraphPath object represents the path from an object to a BranchGroup
or Locale parent.

The following are BranchGroup and L ocate class methods that are related to
picking:

final Scene@ aphPat h pi ckAny(Pi ckShape pi ckShape)

final Scene@ aphPat h pi ckQ osest (Pi ckShape pi ckShape)

final Scene@G aphPat h[] pi ckA | (Pi ckShape pi ckShape)

final Scene@G aphPat h[] pi ckAl | Sort ed(Pi ckShape pi ckShape)

Sorted objects are returned in order, starting with objects closest to the
ViewPlatform.

Picking (the Lazy Way)

® use Convenience Utilities
— com.sun.j3d.utils.ui.* package
— PickM ouseBehavior

— PickNode

» selectNode(int xpos, int ypos, int flags) method does
all the dirty work and returns a selected Node object

» flags is a bitmask representing the classes you are
looking for (e.g., GROUP, LEAF, PRIMITIVE)

Zje
W
A=)

SSun.

microsystems 06-98 64

Student Notes

Even if you insist on doing all the dirty work yourself, you should still look at
the source code for the PickNode and PickM ouseBehavior classes to analyze
how they convert the mouse input into a picked scene graph Node. Of
particular interest, is the use of three Canvas3D methods:

get Cent er Eyel nl magePl at e (eyePosn)

get Pi xel Locat i onl nl nageP at e (xpos, ypos, nousePosn)

get | magePl at eToWwwor | d (noti on)

PickHighlightBehavior.java

Appear ance savedAppearance = nul | ;
Primtive oldPrimtive = null;
Appear ance hi ghl i ght Appear ance;
public void updateScene(int xpos, int ypos) {
Primtive primtive;
primtive = (Primtive) pickScene. sel ect Node(xpos,
ypos, Pi ckNode. PRI M TI VE);
if (oldPrimtive !'= null)
ol dPrimtive. set Appear ance(savedAppear ance) ;
if (primtive I'=null) {
savedAppearance = primtive.get Appearance();
oldPrimtive = primtive;
primtive.set Appear ance(hi ghl i ght Appear ance);

}
} .
>, L
£ o
@5@”} | 06-98 5 | Javis ;*
Sudent Notes

PickHighlightBehavior.javais part of the PickTexture application/applet. Itis
an update of the Lit (lighted shapes) application/applet. When the left mouse is
pressed while the cursor is over an object, the Appearance object is changed,
so the object appears textured. When another object is chosen, the
“oldPrimitive” isrestored to its original appearance. If nothing is picked (the
mouse is pressed while over the background), then the oldPrimitive is restored,
but no shape is currently highlighted.

PickNode is part of the Convenience Utility library.

ThingsTo Do

® Run the application/applet Tennis2

— see Student Notes for programming
experiments

® Run the application/appletPickTexture

— picked objects change Appearance to use
texture mapping

Y
<
N

o
&,

micros; ys!ems“’ 06-98 66

Student Notes

Things to do with Tennis2 (only the first is easy to do)

* Right now, only one ball can be active at atime. Change MouseFire.javato
allow several ballsin motion. (Note: you'll have to make sure only one
Paddlel nterpolator is affecting the robot paddle.)

* Instead of using the middle mouse to fire aball into the scene, add a
Shape3D object to represent a button. When the button is picked, fire the ball
and remove the button from the screen.

* Right now, volleying stops when the Alphafor the BallInterpolator reaches
the end of its cycle (when finished() returns true). Create bounding objects
which represent awall “behind” the two paddles. Use collision with these
walls to determine when to delete the ball.

» Also there are no side walls, so the ball does not bounce off the sides. Create
some side walls. Then either use collision with these walls to determine when
to delete the ball.

Texture Mapping

® apply pixel image onto 2D or 3D geometry

—read in an image
(java.awt.image.Bufferedimage)

— supply/generate texture coordinates at every
vertex

— parametric application: image to geometry
— gpecify texturing attributes (states)

syslem:’ 06-98 67 itk

A
&

Student Notes

Appearance & Texture
Mapping

@ For texture mapping, Appearance may
reference 3 texture relatedN odeComponents

® Appearance class methods

final void setTexture (Texture texture)
final void setTextureAttributes
(TextureAttributes textureAttributes)
final void setTexCoordGeneration
(TexCoor dGener ati on t exCoordGeneration)

$ | 2 al
%ﬁg@y‘?g 06-98 68 A
Sudent Notes

Appearance capabilities (for texturing):
ALLOW_TEXTURE_READ |WRITE
ALLOW_TEXGEN_READ |WRITE
ALLOW_TEXTURE_ATTRIBUTES READ |WRITE

Appearance methods (for texturing):
final void setTexture (Texture texture)

final void setTextureAttributes (TextureAttributes
textureAttributes)

final void set TexCoor dGenerati on (TexCoordGenerati on
t exCoor dGener at i on)

Preparing Images for Texture
Mapping
® |mageComponentobject
— used for Background or Texture objects
— can usejava.awt.Image.Bufferedlmage object
® Texture Mapping

— define atexture
» make Texture2D or Texture3D object with Image
— com.sun.j3d.utilsimage.Texturel oader utility
» highly recommended!

Y
<
=

e
&,

micros; ys!ems“’ 06-98 69

Student Notes

Java 3D Image Component Hierarchy
NodeComponent
ImageComponent
ImageComponent2D
ImageComponent3D

ImageComponent2D and 3D methods:

final int getWdth()

final int getHeight()

final int getDepth() // 3D only

final int getFormat() // lots of internal pixel formats
final void set(lmage) // copies buffered i mage into object

Texture Image

® |oad an image into the Texture object
® mipmap support
® minificationand magnification filters
® boundary clamping or wrapping

— outside [0.0, 1.0] texture coordinate

— boundary color for clamping

S, | % oD
%ﬁg@y‘?g 06-98 0 WK
Sudent Notes

Java 3D Texture Image Hierarchy
NodeComponent
Texture
Texture2D
Texture3D
Texture2D and 3D methods
final void setEnabl e(bool ean st ate)
final void setlmage(int |evel, |nageConponent image)
wherel evel isthe mipmap level
final void setM pMapMdde(int m pmaphbde)
where m pnapMbde iseither BASE LEVEL (no mipmap) or MLTI _LEVEL M P_NAP
final void setMnFilter(int mnFilter)
final void setMagFilter(int nagFilter)

where the filter is one ofFASTEST, N CEST, BASE LEVEL PQ NT,

BASE LEVEL LI NEAR, MULTI _LEVEL_PQO NT, MALTI _LEVEL_LI NEAR (multi level
mipmap only for minification filter)

final void set Boundar yModeS (i nt boundar yMbdeS) orTorR

where the boundar yMbde for the S, T, or R coordinates is eithelCLAMP or WRAP

final void setBoundaryColor(...)

TextureAttributes

® TextureAttributescontrols

— how to mix object/fragment colors with texture
colors
» MODULATE, DECAL, BLEND, or REPLACE
» also specify color for blending
— whether to correct perspective distortion

— access a texture transformation matrix

Y
<
=

e
&,

micros; ys!ems“’ 06-98 71

Student Notes

TextureAttributes capabilities:
ALLOW_MODE_READ |WRITE
ALLOW_BLEND_COLOR_READ |WRITE
ALLOW_TRANSFORM_READ |WRITE

TextureAttributes methods (partia list):
final void set TextureMde(int texturehde)

where textureMode is one of: MODULATE, DECAL, BLEND, or REPLACE.
final void setPerspectiveCorrecti onVbde(int mnode)

where mode is one of NICEST or FASTEST.
final void setTextureBl endCol or(...)
final void set Text ureTransf or n{ Tr ansf or n8D t r ansf or n)

Texture Coordinate

@ if texture coordinates not explicit

@ automatic generation
— based upon distance from planes
— object linear: texture coordinates move with
object
— eyelinear: texture coordinates fixed to world
— sphere map: for reflections/environment
mapping

Y
<
=

e
2

micros; ys!ems“’ 06-98 72

Student Notes

TexCoordGeneration capabilities:
ALLOW_ENABLE_READ |WRITE
ALLOW_FORMAT_READ
ALLOW_MODE_READ
ALLOW_PLANE_READ

TexCoordGeneration methods (partial list):
final void setEnabl e (bool ean state)
final void setFormat (int fornat)

wheref ormat iseither TEXTURE_OOCRDI NATE 2 Or TEXTURE_COCRDI NATE 3
final void setGenMde(int genhMde)

where genMbde isone of CBJECT LI NEAR EYE LI NEAR , OF SPHERE NAP
final void setPlaneS (Vector4f plane) orTorRr

where pl ane isthe plane equation used to generatethe S, T, or R coordinate in
CBJECT LI NEAR and EYE_LI NEAR texture generation modes

PickHighlightBehavior

publ i c Pi ckH ghli ght Behavi or (Canvas3D canvas,
BranchG oup root, Bounds bounds, Conmponent observer){

super (canvas, root, bounds);

t hi s. set Schedul i ngBounds(bounds) ;

root . addChil d(this);

Col or 3f white = new Col or 3f (1. 0f, 1.0f, 1.0f);
Col or 3f bl ack = new Col or 3f (0. Of, 0.0f, 0.0f);

Text ureLoader tex = new TexturelLoader("earth.jpg",
observer);

hi ghl i ght Appear ance = new Appear ance();

hi ghl i ght Appear ance. set Materi al (new
Materi al (white, black, white, white, 15.0f));

hi ghl i ght Appear ance. set Text ure(tex. get Texture());

}
L .
& op
%%Stytl@ | 06-98 73 | Javis ;"')
Sudent Notes

Thereisno error checking here, in case TexturelL oader fails. However, should
it fail, null is returned. Appearance.setTexture(null) doesn’t cause an
exception; it just disables texture mapping.

The Java 3D Viewing Model

® not strictly a camera-based model

— view platform metaphor accommodates head-
tracking

@ virtual and physical worlds separated
— virtual: where virtual objects and avatars are

modeled
— physical: where the user and computer screen
exist

O sun’ £
a7

microsystems. 06-98 74

Student Notes

SimpleUniverse Revisited

@ VirtualUniverse

Locale

Other Objects one or more TransformGroup nodes

platform
GeometryRoot avatarRoot
View r--» Canvas3D --» Screen3D
ViewPlatform v
Physical Physical
L Body Environment & 1 E}
@Sun.' = 3
— e
microsyslem:’ 06-98 75 1A l"'r.-'-

Student Notes

The SimpleUniverse utility creates all the view-related objects. The
TransformGroup is actually a specially derived class, MultiTransformGroup,
which can support a chain of one or more TransformGroup nodes.

SimpleUniverse creates the entire scene graph shown above, except for the two
objects on the left side. SimpleUniverse does have a method to allow the
programmer to attach the BranchGroup (and any attached subgraph) to the
Locae.

@Sun

micros; ystems.

Viewing Classes (Raw)

e VirtualUniverse

— just one is almost always enough
e Locae

— high-resolution coordinates

» 256-bit fixed-point
» can describe galaxiesin atomic size
» only used for trandation among L ocales

— one Locale usually enough

» multiple Locales for mission to Mars

» have submillimeter precision on Mars and at
complementary site on Earth

= (s

A
&

76 1AWA

Student Notes

Viewing Classes (Raw)

e ViewPlatform
— along with its TransformGroup parents in the
scene graph
— specifies location, orientation, and scale within
virtual universe
e View
— connection to other objects (ViewPlatform,
Canvas3D, etc.)
— projection and clipping state
— frame start time and duration

S, | % oD
%ﬁg@y‘?g 06-98 7 WK
Sudent Notes

Multiple View objects are supported. Each View object controls its own set of
canvases.

ViewPlatform methods (partial list):

final void setViewAttachPolicy (int policy)

where pol i cy isone of: Nov NAL_HEAD (default; origin at head),

NOM NAL_FEET , NOM NAL_SCREEN (origin at screen; head offset from origin)

View methods (partial list):
final void setPhysical Body (Physical Body physi cal Body)

final void setPhysical Envi ronnent (Physi cal Envi ronment
physi cal Envi r onnent)

final void attachVi ewPl atform (Vi ewPl atform vp)

final void setCanvas3D (Canvas3D canvas3D, int index)
final void setProjectionPolicy (int policy)

| ong get Qurrent FrameSt art Ti me()

| ong get Last FraneDur ati on()

| ong get Fr ameNunber ()

S Sun. '

systems 06-98 78 A

micro!

Viewing Classes (Raw)

@ Canvas3D
— represents window into which Java 3D renders

— multiple Canvas3D objects can be supported from one
View object (stereo)

— methods used to convert pixel location to virtual world
coordinates (for picking)

® Screen3D
— represents physical properties of display screen
® PhysicalBody, Physical Environment

— describe end user’ s head, eyes, ears, and associated
devices (

= |

A
&

Student Notes

SimpleUniverse

® Convenience Utility

@ describes new Convenience classes
— Viewer
» virtual & physical “presence’
— ViewingPlatform

» PlatformGeometry
e could be dashboard of car or airplane cockpit

» ViewerAvatar
e could represent user’s hands

syslem:’ 06-98 79

=

{04
W
&

Student Notes

@ VirtualUniverse

ViewingPlatform

Viewer

SimpleUniverse Classes

Setrmemoo
View f--» Canvas3D f--» Screen3D
v X .
Physical Physical
Body Environment

QSun.

microsystems. 06-98

80

=
=

fri

&

Sudent Notes

Moving ViewingPlatform

public Tennis3() {
set Layout (new Bor der Layout ());
Canvas3D ¢ = new Canvas3D(nul |);
add("Center", c);
BranchG oup scene = createSceneG aph();
Si npl eUni verse u = new Si npl eUni verse(c);
Vi ewi ngPl at f or m vi ewi ngpf m = u. get Vi ewi ngPl at form() ;
Transforn3 oup viewlrans@ =
vi ewi ngpf m. get Vi ewi ngTr ansform() ;
Boundi ngSpher e bounds = new Boundi ngSphere (
new Poi nt 3d(0.0, 0.0,0.0), 100.0);
VPMouse vpnouse = new VPMouse(vi ewlrans@);
vprouse. set Schedul i ngBounds (bounds) ;
scene. addChi | d(vprouse) ;
u. addBr anchGr aph(scene);

XSun.' E

microsyslem:’ 06-98 81 1AWA

= il‘ I..,.
A
&

Student Notes

Thisintroduces a VPMouse object, which is a behavior that monitorsan AWT

event (right mouse drag in x direction). Since SimpleUniverse branch graph is
already compiled (and cannot be added to), the VPmouse behavior is added to

the content branch graph.

L .i. 1
@Sun' -
syslems“’ 06-98 82 I

micro!

ThingsTo Do

@ Run the Tennis3 application/applet. Pressing the
right mouse button, while dragging the mousein
the x direction rotates theViewingPlatform
TransformGroup around the y axis.

o Modify the code to perform different
ViewingPlatform motion. (Compare this with
changing the moveAwayGroup on the “geometry”
side of the scene graph.)

® Add some geometry to thePlatformGeometry
object. What happens when theViewingPlatform
moves?

A
\\--.TJ

Student Notes

micro!

Rendering M odes

@ Retained mode
— standard scene graph construction
— some elements may change during rendering

® |mmediate mode
— ignore scene graph
— can be mixed with other modes
® Compiled-retained mode
— optimizes, but much harder to change data
— may perform geometry compression and grouping,
scene graph flattening, and state change clustering
L

@Sun = 3D

systems 06-98 83 A

Student Notes

|mmediate Mode

® Must still create viewing branch graph and
Geometry objects for geometric data

® Use Canvas3D. st opRender er () to stop
Java 3D renderer

® Manually control rendering
— override several Canvas3D methods

— create GraphicsContext3D object with list of
Light, Transform, Appearance, and Geometry
objects

Y
<
=

e
2

micros; ys!ems“’ 06-98 84

Student Notes

The basic Java 3D rendering loop is:

clear canvas

call overridden Canvas3D. pr eRender ()

set view (in viewing branch graph)

render opague scene graph objects

call overridden Canvas3D. render Fi el d(FI ELD ALL)
render transparent scene graph objects

call overridden Canvas3D. post Render ()
synchronize and swap buffers

call overridden Canvas3D. post Swap()

Overview of Other Java 3D

classes
@ Background

— leaf node that uses solid color or image for
background

— default background is solid black

— ViewPlatform must be within application
Bounds

e Fog
— depth cueing
— superclassfor LinearFog and Exponential Fog
— fog math similar to OpenGL
— fogged objects must be within Bounds

QSun. &

microsystems 06-98 85

A
\\--.TJ

Student Notes

Several Background or Fog nodes may be active, but the “closest” (to
ViewPlatform or object) is used.

Overview of Other Java 3D

classes
® Sensor

— used to support non-standard input devices
® Morph

— automated morph among several
GeometryArray objects

@ Sound, Soundscape
— source of sound may be spatially located in 3D

-.:!'1['1-'-'

- i

SSun. '

microsystems 06-98 86

A
\\--.TJ

Student Notes

A Morph object consists of:

* asingle Appearance object

* an array of GeometryArray objects
* an array of corresponding weights

XSun.' &

systems 06-98 87 WA

micro!

Exceptions

® RestrictedA ccessException
— trying to read or write something without
permission
o CapabilityNotSetException
@ BadTransformException

® SingularMatrixException

=
S

Student Notes

XSun.'

systems 06-98

micro!

Exceptions

e DanglingReferenceException
® |llegal SharingException

® MultipleParentException

® SceneGraphCycleException
® SoundException

88

Z e

A
&

Student Notes

Summary

® Steps to Mastering Java 3D Programming
— Buy the book/Visit the web sites
— Read as much code as you can

— Become comfortable with 3D graphics
(lighting, texturing, etc.)

— Start trying to render static objects. Then try
animation (Behaviors/Interpolators).

— Design scene graphs before coding
® Thanks for coming

S Sun.

microsystems 06-98

I
W
&

8 9 : 1..' .'II

Student Notes

Java 3D Class Hierarchy (partial)

Transform3D

l
‘ BoundingSphere

BoundingPolytope
I Colorinterpolator

Alpha

‘. BranchGroup

'TransformGroup

‘ SharedGroup

Background

Interpolator
Billboard
A

Rotationlnterolator
PathInterpolator

SceneGraphObject

DirectionaILight
———
/'

Y]

I N
Material
= Texture

Text3D

NodeComponent

S Sunl

microsystems 06-98 a0 AN l"'rr

*Attributes

Student Notes

Lega Notice:
Theinformation contained in this document is subject to change without notice.

SUN MICROSY STEMS PROVIDES THISMATERIAL "ASIS' AND MAKES NO WARRANTY
OF ANY KIND, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. SUN MICROSY STEMS SHALL NOT BE LIABLE FOR ERRORS CONTAINED
HEREIN OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES (INCLUDING LOST
PROFITSIN CONNECTION WITH THE FURNISHING, PERFORMANCE OR USE OF THIS
MATERIAL, WHETHER BASED ON WARRANTY, CONTRACT, OR OTHER LEGAL
THEORY).

Some states do not alow the exclusion of implied warranties or the limitations or exclusion of liability
for incidental or consequential damages, so the above limitations and exclusion may not apply to you.
Thiswarranty gives you specific legal rights, and you also may have other rights which vary from state
to state.

Copyright (C) 1998 by Sun Microsystems Inc.
All Rights Reserved.

Permission to use, copy, modify, and distribute this documentation for NON-COMMERCIAL
purposes and without fee is hereby granted provided that this copyright notice appearsin al copies.

This documentation was prepared for Sun Microsystems by K Computing (5410 Highway 55, Suite W;
— Durham, NC 27713; +1-919-572-2427). For further information about course development or i:ﬂ)rse
@m plEase contact either Sun Microsystems or K Computing. o 3'!::

microsyslem:: 06-98 91] AVA i"‘-.-'-

Student Notes

